Dye tracing of the Lusaka karstified aquifer system: implications towards urban groundwater quality protection.

Dye tracing Groundwater protection Karst aquifer Lusaka Management Sanitation

Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
25 May 2023
Historique:
received: 27 10 2022
accepted: 19 04 2023
medline: 29 5 2023
pubmed: 26 5 2023
entrez: 25 5 2023
Statut: epublish

Résumé

Management of groundwater resources requires a large amount of data, coupled with an understanding of the aquifer system behavior. In developing countries, the scarcity in groundwater data has led to aquifers being managed according to rule-of-thumb standards or even abandoned as unmanageable at times. Groundwater quality protection thus has been through prescribed separation distances often without due regard for internal and boundary characteristics that affect response rates of groundwater movement, attenuation of pollutants, and recharge. In this study, we examine the boundary characteristics of the highly vulnerable karst aquifer system in the rapidly expanding city of Lusaka using a dye tracer technique. We investigate the flow dynamics (magnitude and direction) of groundwater using dye tracer dyes (fluorescein and rhodamine) spiked in pit latrines and observed at discharge springs. The results provide irrefutable evidence that pit latrines are a source and a pathway to contamination of groundwater. Dye tracer movement in groundwater was rapid, estimated at 340 and 430 m/day for fluorescein and rhodamine, respectively, through interconnected conduit density. The vadose zone (epikarst) tends to store diffuse recharge before release to the phreatic zone. These rapid groundwater movements render regulatory separation minimum distances of 30 m between abstraction wells and pit latrines/septic tanks in such environments to be an ineffective means of reducing contamination. The policy focus in the protection of groundwater quality should henceforth be on robust sanitation solutions especially for low-income communities that recognize the socio-economic diversity.

Identifiants

pubmed: 37231317
doi: 10.1007/s10661-023-11272-z
pii: 10.1007/s10661-023-11272-z
doi:

Substances chimiques

Coloring Agents 0
Fluorescein TPY09G7XIR
Rhodamines 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

732

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Adelana, S. M. A., Tamiru, A., Nkhuwa, D. C. W., Tindimugaya, C., & Oga, M. S. (2008). Urban groundwater management and protection in sub-Saharan Africa. Applied groundwater studies in Africa. Taylor and Francis, London. 30 pages.
Ahmed, K. M., Pedley, S., Macdonald, D. M. J., Lawrence, A.G., Howard, A. G., & Barret, M. H. (2001). Guidelines for assessing the risk to groundwater from on-site sanitation. British Geological Survey commissioned report CR/01/142. 103 pages.
Banda, K. E., Mwandira, W., Jakobsen, R., Ogola, J., Nyambe, I., & Larsen, F. (2019). Mechanism of salinity change and hydrogeochemical evolution of groundwater in the Machile-Zambezi Basin, South-western Zambia. Journal of African Earth Sciences, 153, 72–82. https://doi.org/10.1016/j.jafrearsci.2019.02.022
doi: 10.1016/j.jafrearsci.2019.02.022
Banks, E. W., Cook, P. G., Owor, M., Okullo, J., Kebede, S., Nedaw, D., Mleta, P., Fallas, H., Gooddy, D., John MacAllister, D., Mkandawire, T., Makuluni, P., Shaba, C. E. & MacDonald, A. M. (2021). Environmental tracers to evaluate groundwater residence times and water quality risk in shallow unconfined aquifers in sub Saharan Africa. Journal of Hydrology, 598, 125753. https://doi.org/10.1016/j.jhydrol.2020.125753
Bäumle, R., & Kang'omba, S. (2009). Development of a groundwater information and management program for the Lusaka Groundwater Systems: Report No. 2, desk study and proposed work program report. Federal Ministry for Economic Cooperation and Development (BMZ), Project number BMZ PN2003 2024.2 (Phase I), BGR 05‐2315‐01, 101 pages.
Bäumle, R., & Kang’omba, S. (2012). Hydrogeological map of Zambia, Lusaka Province, first edition. Department of Water Affairs, Ministry of Lands, Energy and Water Development, Lusaka, Zambia & Federal Institute for Geosciences and Natural Resources, BGR, Hannover; Germany. 68 pages.
Bäumle, R., & Kang’omba, S. (2013). Development of a groundwater information & management program for the Lusaka groundwater systems: key recommendations and findings. Lusaka: Ministry of Mines, Energy and Water Development, Department of Water Affairs and Federal Institute for Geosciences and Natural Resources. 50 pages.
Benischke, R. (2021). Advances in the methodology and application of tracing in karst aquifers. Hydrogeology Journal, 29(1), 67–88.
doi: 10.1007/s10040-020-02278-9
Chande, M. M., & Mayo, A. W. (2019). Assessment of groundwater vulnerability and water quality of Ngwerere sub-catchment urban aquifers in Lusaka, Zambia. Physics and Chemistry of the Earth, Parts a/b/c, 112, 113–124.
doi: 10.1016/j.pce.2019.03.004
Chapra, S. C. (2008). Surface water-quality modeling. Waveland press. 805 pages.
Cunningham, K. J., Carlson, J. L., Wingard, G. L., Robinson, E., & Wacker, M. A. (2004). Characterization of aquifer heterogeneity using cyclostratigraphy and geophysical methods in the upper part of the karstic Biscayne aquifer, southeastern Florida. Water-Resources Investigations Report, 3(4208), 4208.
Currens J. C., (2013). Kentucky geological survey procedures for groundwater tracing using fluorescent dyes. Kentucky Geological Survey, University of Kentucky USA, Lexington. 30 pages.
Dasgupta, S., Agarwal, N., & Mukherjee, A. (2021). Moving up the on-site sanitation ladder in urban India through better systems and standards. Journal of Environmental Management, 280, 111656. https://doi.org/10.1016/j.jenvman.2020.111656
De Waele, J., & Follesa, R. (2003). Human impact on karst: The example of Lusaka (Zambia). International Journal of Speleology, 32(1), 5.
Ferrer, N., Folch, A., Masó, G., Sanchez, S. & Sanchez-Vila, X. (2020). What are the main factors influencing the presence of faecal bacteria pollution in groundwater systems in developing countries? Journal of Contaminant Hydrology, 228, 103556.  https://doi.org/10.1016/j.jconhyd.2019.103556
Field, M. S. (2003). A review of some tracer-test design equations for tracer-mass estimation and sample-collection frequency. Environmental Geology, 43, 867–881. https://doi.org/10.1007/s00254-002-0708-7
doi: 10.1007/s00254-002-0708-7
Ford, D., & Williams, P. D. (2007). Karst hydrogeology and geomorphology. Chichester, UK: John Wiley & Sons.
doi: 10.1002/9781118684986
Foster, S. (1999). Groundwater in urban development—a review of linkages and concernslinkages and concerns. Impacts of Urban Growth on Surface Water and Groundwater Quality: Proceedings of an International Symposium Held During IUGG 99, the XXII General Assembly of the International Union of Geodesy and Geophysics, at Birmingham, UK 18–30 July 1999.
Foster, S. (2022). The key role for groundwater in urban water-supply security. Journal of Water and Climate Change, 13, 3566–3577. https://doi.org/10.2166/wcc.2022.174
doi: 10.2166/wcc.2022.174
Foster, S., Eichholz, M., Nlend, B., & Gathu, J. (2020). Securing the critical role of groundwater for the resilient water-supply of urban Africa. Water Policy, 22, 121–132. https://doi.org/10.2166/wp.2020.177
doi: 10.2166/wp.2020.177
Foster, S., Hirata, R., Eichholz, M., & Alam, M.-F. (2022). Urban self-supply from groundwater—an analysis of management aspects and policy needs. Water, 14, 575.
doi: 10.3390/w14040575
Gaye, C. B., & Tindimugaya, C. (2019). Review: Challenges and opportunities for sustainable groundwater management in Africa. Hydrogeology Journal, 27, 1099–1110. https://doi.org/10.1007/s10040-018-1892-1
doi: 10.1007/s10040-018-1892-1
Graham, J. P., & Polizzotto, M. L. (2013). Pit latrines and their impacts on groundwater quality: a systematic review. Environmental Health Perspectives,121, 521–530. https://doi.org/10.1289/ehp.1206028
doi: 10.1289/ehp.1206028
Green, R. T., Painter, S. L., Sun, A., & Worthington, S. R. H. (2006). Groundwater contamination in Karst Terranes. Water, Air, & Soil Pollution: Focus, 6, 157–170. https://doi.org/10.1007/s11267-005-9004-3
doi: 10.1007/s11267-005-9004-3
Goldscheider, N., & Drew, D. (2007). Methods in karst hydrogeology. IAH: International Contributions to Hydrogeology, 26. London, UK: Taylor & Francis.
Hynds, P. D., Misstear, B. D., & Gill, L. W. (2013). Unregulated private wells in the Republic of Ireland: Consumer awareness, source susceptibility and protective actions. Journal of Environmental Management, 127, 278–288. https://doi.org/10.1016/j.jenvman.2013.05.025
doi: 10.1016/j.jenvman.2013.05.025
James, T., Tingju, Z., & Diao, X. (2009). The impact of climate variability and change on economic growth and poverty in Zambia. International Food Policy Research Institute. Washington DC, USA. 73 pages.
Karen, M., Godau, T., Petulo, P., & Lungomesha, S. (2019). Investigation of groundwater vulnerability and contamination in Lusaka as possible factors in the 2017/18 cholera epidemic. GeoSFF Technical Report No. 1, Federal Ministry for Economic Cooperation and Development, BMZ‐No. 2015.3503.8, 43 p.
Kihila, J. M., & Balengayabo, J. G. (2020). Adaptable improved onsite wastewater treatment systems for urban settlements in developing countries. Cogent Environmental Science, 6(1), 1823633.
doi: 10.1080/23311843.2020.1823633
Lawrence, A., Macdonald, D., Howard, A., Barrett, M., Pedley, S., Ahmed, K., & Nalubega, M. (2001). Guidelines for assessing the risk to groundwater from on-site sanitation. British Geological Survey, 103pp. (CR/01/142N) (Unpublished).
Lapworth, D. J. L., Nkhuwa, D. C. W., & Okotto, O. J. (2017). Urban groundwater quality in sub-Saharan Africa: Current status and implications for water security and public health. Hydrogeology Journal, 25, 1093–1116.
doi: 10.1007/s10040-016-1516-6
Liddle, E. S., Mager, S. M., & Nel, E. L. (2015). The suitability of shallow hand dug wells for safe water provision in sub-Saharan Africa: lessons from Ndola, Zambia. Applied Geography, 57, 80–90. https://doi.org/10.1016/j.apgeog.2014.12.010
doi: 10.1016/j.apgeog.2014.12.010
Masindi, V., & Foteinis, S. (2021). Groundwater contamination in sub-Saharan Africa: Implications for groundwater protection in developing countries. Cleaner Engineering and Technology, 2, 100038. https://doi.org/10.1016/j.clet.2020.100038
doi: 10.1016/j.clet.2020.100038
Ministry of Health. (2019). Kazimva Rural Health, District Health Management Team, Chilanga, Zambia. Annual Report, Unpublished. 15 pages.
Mpamba, N. H., Hussen, A., Kangomba, S., Nkhuwa, D. C. W., Nyambe, I. A., Mdala, C., Wohnlich, S., & Shibasaki, N. (2008). Evidence and implications of groundwater mining in the Lusaka urban aquifers. Physics and Chemistry of the Earth, 33, 648–654.
doi: 10.1016/j.pce.2008.06.015
Mull D.S., Smoot J.L., & Liebermann T.D., (1988). Dye tracing techniques used to determine ground-water flow in a carbonate aquifer system near Elizabethtown, Kentucky: U.S. Geological Survey Water-Resources Investigations Report 87- 4174. 102 pages.
Museteka, L., & Baumle, R. (2009). Groundwater chemistry of springs and water supply wells in Lusaka, Lusaka, Zambia. Technical Report No. 1, p. 4, 14.
Nkhuwa, D. C. W. (1996). Hydrogeological and engineering geological problems of urban development over karstified marble in Lusaka, Zambia. Mitteilungenzur Ingenieur- und Hydrogeology, Aachen 63. 251 pages.
Nkhuwa, D. C. W. (2003). Human activities and threats of chronic epidemics in a fragile geologic environment. Physics and Chemistry of the Earth, Parts a/b/c, 28(20–27), 1139–1145. https://doi.org/10.1016/j.pce.2003.08.035
doi: 10.1016/j.pce.2003.08.035
Nyambe, I. A., & Maseka, C. (2000). Groundwater pollution, landuse and environmental impacts on Lusaka aquifer. In O. Sililo (Ed.), Proceedings of the XXX IAH Congress on Groundwater: Past Achievements and Future Challenges (pp. 803–808). Cape Town, South Africa: A.A. Balkema, P.O. Box 1675, 3000 BR Rotterdam, Netherlands.
Nyenje, P. M., Foppen, J. W., Kulabako, R., Muwanga, A., & Uhlenbrook, S. (2013). Nutrient pollution in shallow aquifers underlying pit latrines and domestic solid waste dumps in urban slums. Journal of Environmental Management, 122, 15–24. https://doi.org/10.1016/j.jenvman.2013.02.040
doi: 10.1016/j.jenvman.2013.02.040
Quinlan, J. F., (1982). Interpretation of dye-tests and related studies, Caldwell Lace Leather Company waste disposal sites. Logan Co., Kentucky: unpublished consultant’s report. 35 pages.
Reaver, K., Levy, J., Nyambe, I., Hay, M. C., Mutiti, S., Chandipo, R. & Meiman, J. (2020). Data sets: An assessment of Water Trusts: Drinking water quality and provision in six low‐income, peri‐urban communities of Lusaka, Zambia [data set]. GeoHealth. Zenodo. https://doi.org/10.5281/zenodo.4292400
Reaver, K. M., Levy, J., Nyambe, I., Hay, M. C., Mutiti, S., Chandipo, R., & Meiman, J. (2021). Drinking water quality and provision in six low-income, peri-urban communities of Lusaka, Zambia. GeoHealth. https://doi.org/10.1029/2020GH000283
doi: 10.1029/2020GH000283
Reberski, J. L., Terzić, J., Maurice, L. D., & Lapworth, D. J. (2022). Emerging organic contaminants in karst groundwater: A global level assessment. Journal of Hydrology, 604, 127242.
doi: 10.1016/j.jhydrol.2021.127242
Rivett, M. O., Tremblay-Levesque, L.-C., Carter, R., Thetard, R. C. H., Tengatenga, M., Phoya, A., Mbalame, E., McHilikizo, E., Kumwenda, S., Mleta, P., Addison, M. J. & Kalin, R. M. (2022). Acute health risks to community hand-pumped groundwater supplies following Cyclone Idai flooding. Science of The Total Environment, 806, 150598.  https://doi.org/10.1016/j.scitotenv.2021.150598
Sabatini, D. A., & Austin, T. A. (1991). Characteristics of rhodamine WT and fluorescein as adsorbing ground-water tracers. Groundwater, 29, 341–349. https://doi.org/10.1111/j.1745-6584.1991.tb00524.x
doi: 10.1111/j.1745-6584.1991.tb00524.x
Simpson, J. L., Drysdall, A. R., & Lambert, H. H. J. (1963). The geology and groundwater resources of the Lusaka area. Report of the Geological Survey No. 16, Explanation of degree sheet 1528, NW. quarter; Northern Rhodesia Ministry of Labour and Mines, 59 pages. Government Printer, Lusaka.
Sorensen, J. P. R., Lapworth, D. J., Nkhuwa, D. C. W., Stuart, M. E., Goody, D. C., Bell, R. A., Chirwa, M., Kabika, J., Liemisa, M., Chibesa, M., & Pedley, S. (2015). Emerging contaminants in urban groundwater sources in Africa. Water Research, 72, 51–63.
doi: 10.1016/j.watres.2014.08.002
Stroj, A., Briški, M., & Oštrić, M. (2020). Study of groundwater flow properties in a karst system by coupled analysis of diverse environmental tracers and discharge dynamics. Water, 12(9), 2442.
doi: 10.3390/w12092442
Takavada, I., Hoko, Z., Gumindoga, W., Mhizha, A., Nuttinck, J.-Y., Faure, G. & Malik, D. (2022). An assessment on the effectiveness of the sanitary seal in protecting boreholes from contamination: a case of Mbare Suburb, Harare. Physics and Chemistry of the Earth, Parts A/B/C, 126, 103107. https://doi.org/10.1016/j.pce.2022.103107
Templeton, M. R., Hammoud, A. S., Butler, A. P., Braun, L., Foucher, J. A., Grossmann, J., Boukari, M., Faye, S., & Jourda, J. P. (2015). Nitrate pollution of groundwater by pit latrines in developing countries. AIMS Environmental Science, 2, 302–313. https://doi.org/10.3934/environsci.2015.2.302
doi: 10.3934/environsci.2015.2.302
Twinomucunguzi, F. R. B., Nyenje, P. M., Kulabako, R. N., Semiyaga, S., Foppen, J. W., & Frank Kansiime, F. (2020). Reducing groundwater contamination from on-site sanitation in peri-urban sub-Saharan Africa: reviewing transition management attributes towards implementation of water safety plans. MDPI, Switzerland Pages 21.
Von Hoyer, H., Köhler, G., & Schmidt, G. (1978). Groundwater and Management Studies for Lusaka Water Supply, Part 1: Groundwater Studies, Vol. I: Text; Vol. III+IV: Annexes, Vol V: Maps. Federal Institute for Geosciences and Natural Resources (BGR) and Lusaka City Council. Lusaka. 152 pages.

Auteurs

Mercy Simaubi (M)

Integrated Water Resource Management Centre, Department of Geology, School of Mines, University of Zambia, P.O. Box 32379, Lusaka, Zambia.

Kawawa Banda (K)

Integrated Water Resource Management Centre, Department of Geology, School of Mines, University of Zambia, P.O. Box 32379, Lusaka, Zambia. Kawawa.Banda@unza.zm.

Jonathan Levy (J)

Institute for the Environment and Sustainability, Miami University, Oxford, OH, USA.

Joe Meiman (J)

United States National Park Service, Ret., Union, KY, USA.

Imasiku Nyambe (I)

Integrated Water Resource Management Centre, Department of Geology, School of Mines, University of Zambia, P.O. Box 32379, Lusaka, Zambia.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal

Classifications MeSH