Yarrowia lipolytica produces lipid-rich biomass in medium mimicking lignocellulosic biomass hydrolysate.

Batch cultures Bioreactor Lignocellulosic biomass hydrolysates Microbial lipids Yarrowia lipolytica

Journal

Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612

Informations de publication

Date de publication:
Jun 2023
Historique:
received: 22 02 2023
accepted: 27 04 2023
revised: 14 04 2023
medline: 5 6 2023
pubmed: 16 5 2023
entrez: 16 5 2023
Statut: ppublish

Résumé

In recent years, lignocellulosic biomass has become an attractive low-cost raw material for microbial bioprocesses aiming the production of biofuels and other valuable chemicals. However, these feedstocks require preliminary pretreatments to increase their utilization by microorganisms, which may lead to the formation of various compounds (acetic acid, formic acid, furfural, 5-hydroxymethylfurfural, p-coumaric acid, vanillin, or benzoic acid) with antimicrobial activity. Batch cultures in microplate wells demonstrated the ability of Yarrowia strains (three of Y. lipolytica and one of Y. divulgata) to grow in media containing each one of these compounds. Cellular growth of Yarrowia lipolytica W29 and NCYC 2904 (chosen strains) was proven in Erlenmeyer flasks and bioreactor experiments where an accumulation of intracellular lipids was also observed in culture medium mimicking lignocellulosic biomass hydrolysate containing glucose, xylose, acetic acid, formic acid, furfural, and 5-HMF. Lipid contents of 35% (w/w) and 42% (w/w) were obtained in bioreactor batch cultures with Y. lipolytica W29 and NCYC 2904, respectively, showing the potential of this oleaginous yeast to use lignocellulosic biomass hydrolysates as feedstock for obtaining valuable compounds, such as microbial lipids that have many industrial applications. KEY POINTS: • Yarrowia strains tolerate compounds found in lignocellulosic biomass hydrolysate • Y. lipolytica consumed compounds found in lignocellulosic biomass hydrolysate • 42% (w/w) of microbial lipids was attained in bioreactor batch cultures.

Identifiants

pubmed: 37191683
doi: 10.1007/s00253-023-12565-6
pii: 10.1007/s00253-023-12565-6
pmc: PMC10238328
doi:

Substances chimiques

lignocellulose 11132-73-3
formic acid 0YIW783RG1
Furaldehyde DJ1HGI319P
Lipids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3925-3937

Subventions

Organisme : Fundação para a Ciência e a Tecnologia
ID : 2021.05799.BD

Informations de copyright

© 2023. The Author(s).

Références

Microb Cell Fact. 2022 Oct 28;21(1):226
pubmed: 36307797
Yeast. 2021 Jul;38(7):391-400
pubmed: 34000094
Microbiology (Reading). 2014 Apr;160(Pt 4):807-817
pubmed: 24509502
Appl Environ Microbiol. 2013 Mar;79(5):1661-7
pubmed: 23275506
J Biotechnol. 2021 Apr 10;331:37-47
pubmed: 33652072
Biotechnol Biofuels. 2018 Jan 22;11:11
pubmed: 29387172
Int J Syst Evol Microbiol. 2013 Dec;63(Pt 12):4818-4823
pubmed: 24158944
J Biosci Bioeng. 1999;87(2):169-74
pubmed: 16232445
Environ Technol. 2012 Apr-May;33(7-9):951-60
pubmed: 22720420
FEMS Yeast Res. 2014 Dec;14(8):1234-48
pubmed: 25331461
Biotechnol Biofuels. 2020 Jan 06;13:3
pubmed: 31911818
Crit Rev Biotechnol. 2011 Mar;31(1):20-31
pubmed: 20513164
BMC Microbiol. 2020 Mar 14;20(1):60
pubmed: 32169040
Int J Food Microbiol. 2016 Oct 17;235:1-9
pubmed: 27391864
Bioresour Technol. 2018 Jun;258:302-309
pubmed: 29567023
mSystems. 2021 Aug 31;6(4):e0044321
pubmed: 34342539
Biotechnol Biofuels. 2019 Oct 8;12:240
pubmed: 31624502
Bioresour Technol. 2021 Apr 28;334:125235
pubmed: 33957458
Bioresour Technol. 2009 Oct;100(20):4843-7
pubmed: 19497736
Biotechnol Prog. 2014 Jul-Aug;30(4):767-75
pubmed: 24777971
J Ind Microbiol Biotechnol. 2014 Jul;41(7):1061-70
pubmed: 24818698
FEMS Yeast Res. 2020 Sep 1;20(6):
pubmed: 32840573
Crit Rev Biotechnol. 2022 Mar;42(2):163-183
pubmed: 34157916
Bioresour Technol. 2016 May;207:102-8
pubmed: 26874438
ACS Omega. 2017 Dec 31;2(12):8568-8579
pubmed: 29302629
Metab Eng. 2016 Nov;38:115-124
pubmed: 27396355
Biotechnol Biofuels. 2021 Mar 12;14(1):65
pubmed: 33712047
J Ind Microbiol Biotechnol. 2004 Sep;31(8):345-52
pubmed: 15338422
Yeast. 1992 Jul;8(7):501-17
pubmed: 1523884
Bioresour Technol. 2017 Dec;245(Pt B):1507-1519
pubmed: 28642053
Eng Life Sci. 2017 Mar 13;17(6):695-709
pubmed: 32624815
BMC Microbiol. 2021 Mar 8;21(1):77
pubmed: 33685391
Biotechnol Biofuels. 2016 Jul 21;9:149
pubmed: 27446238
Bioresour Technol. 2016 Jan;199:103-112
pubmed: 26482946
Appl Biochem Biotechnol. 2009 Dec;159(3):591-604
pubmed: 19156369
PeerJ. 2022 Mar 1;10:e12833
pubmed: 35251776

Auteurs

Bruna Dias (B)

CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
LABBELS-Associate Laboratory, Guimarães, Braga, Portugal.

Helena Fernandes (H)

CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
LABBELS-Associate Laboratory, Guimarães, Braga, Portugal.

Marlene Lopes (M)

CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. marlenelopes@deb.uminho.pt.
LABBELS-Associate Laboratory, Guimarães, Braga, Portugal. marlenelopes@deb.uminho.pt.

Isabel Belo (I)

CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. ibelo@deb.uminho.pt.
LABBELS-Associate Laboratory, Guimarães, Braga, Portugal. ibelo@deb.uminho.pt.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass
Biomass Lignin Wood Populus Microscopy, Electron, Scanning
1.00
Wildfires Humans Australia Forests Indigenous Peoples
Charcoal Soil Microbiology Soil Biomass Carbon

Classifications MeSH