Biomechanical modeling and assessment of lumbar vertebral body tethering configurations.


Journal

Spine deformity
ISSN: 2212-1358
Titre abrégé: Spine Deform
Pays: England
ID NLM: 101603979

Informations de publication

Date de publication:
09 2023
Historique:
received: 23 12 2022
accepted: 29 04 2023
medline: 15 8 2023
pubmed: 14 5 2023
entrez: 13 5 2023
Statut: ppublish

Résumé

Vertebral body tethering (VBT) is a fusionless spinal growth modulation technique, which shows promise for pediatric idiopathic scoliosis (IS) curve correction. This technique, mainly used for thoracic curves, is increasingly being used to treat lumbar curves in order to preserve spine flexibility. It remains necessary to adequately define the cord tension to be applied during the operation and the instrumented levels to biomechanically predict correction over time for the lumbar spine. Twelve pediatric patients with lumbar IS, treated with lumbar-only or lumbar and thoracic VBT, were selected for this study. Three independent variables were tested alternately using a patient-specific finite element model (FEM), which includes an algorithm modeling vertebra growth and spine curve changes due to growth modulation for 24 months post-operatively according to the Hueter-Volkmann principle. Parameters included cable tensioning (150N/250N), upper instrumented level (actual UIV, UIV-1) and lower instrumented level (actual LIV, LIV + 1). Each FEM was personalized using 3D radiographic reconstruction and flexibility supine radiographs. An increase in cord tension (from 150 to 250N) had significant effects on main thoracic and thoraco-lumbar/lumbar Cobb angles, as well as on lumbar lordosis, after surgery (supplementary average correction of 3° and 8°, and increase of 1.4°, respectively) and after 24 months (4°, 10° and 1.1°) (p < 0.05). Adding a level to the actual UIV or LIV did not improve correction. This parametric study showed that cord tension is the most important biomechanical parameter on the simulated immediate and 2-year increase in lumbar curve correction. Our preliminary model suggests that it is not advantageous to add additional instrumented levels. This computational study uses a retrospective validation cohort (level of evidence 3).

Identifiants

pubmed: 37179281
doi: 10.1007/s43390-023-00697-8
pii: 10.1007/s43390-023-00697-8
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1041-1048

Informations de copyright

© 2023. The Author(s), under exclusive licence to Scoliosis Research Society.

Références

Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA (2008) Adolescent idiopathic scoliosis. Lancet (London, England) 371(9623):1527–1537. https://doi.org/10.1016/S0140-6736(08)60658-3
doi: 10.1016/S0140-6736(08)60658-3 pubmed: 18456103
Hegde SK, Venkatesan M, Akbari KK, Badikillaya VM (2021) Efficacy of anterior vertebral body tethering in skeletally mature children with adolescent idiopathic scoliosis: a preliminary report. Int J Spine Surg 15(5):995–1003
doi: 10.14444/8122 pubmed: 34551922 pmcid: 8651188
Baker C, Milbrandt T, Potter D, Larson AN (2020) Anterior Lumbar Vertebral Body Tethering in Adolescent Idiopathic Scoliosis: Surgical/Technical Tips. Journal of POSNA, 2(3). https://www.jposna.org/ojs/index.php/jposna/article/view/145
Baker CE, Milbrandt TA, Larson AN (2021) Anterior vertebral body tethering for adolescent idiopathic scoliosis: early results and future directions. Orthop Clin North Am 52(2):137–147. https://doi.org/10.1016/j.ocl.2021.01.003
doi: 10.1016/j.ocl.2021.01.003 pubmed: 33752835
Newton PO (2020) Spinal growth tethering: indications and limits. Ann Translatl Med 8(2):27
doi: 10.21037/atm.2019.12.159
McDonald TC, Shah SA, Hargiss JB, Varghese J, Boeyer ME, Pompliano M, Neal K, Lonner BS, Larson AN, Yaszay B, Newton PO, Hoernschemeyer DG, Harms Nonfusion Study Group (2022) When successful, anterior vertebral body tethering (VBT) induces differential segmental growth of vertebrae: an in vivo study of 51 patients and 764 vertebrae. Spine Deform. https://doi.org/10.1007/s43390-022-00471-2.
doi: 10.1007/s43390-022-00471-2. pubmed: 35921039
Pehlivanoglu T, Oltulu I, Erdag Y, Akturk UD, Korkmaz E, Yildirim E, Sarioglu E, Ofluoglu E, Aydogan M (2021) Comparison of clinical and functional outcomes of vertebral body tethering to posterior spinal fusion in patients with adolescent idiopathic scoliosis and evaluation of quality of life: preliminary results. Spine Deform 9(4):1175–1182. https://doi.org/10.1007/s43390-021-00323-5
doi: 10.1007/s43390-021-00323-5 pubmed: 33683642
Rushton P, Nasto L, Parent S, Turgeon I, Aldebeyan S, Miyanji F (2021) Anterior vertebral body tethering for treatment of idiopathic scoliosis in the skeletally immature: results of 112 cases. Spine 46(21):1461–1467. https://doi.org/10.1097/BRS.0000000000004061
doi: 10.1097/BRS.0000000000004061 pubmed: 34091563 pmcid: 8500278
Baker CE, Kiebzak GM, Neal KM (2021) Anterior vertebral body tethering shows mixed results at 2-year follow-up. Spine Deform 9(2):481–489. https://doi.org/10.1007/s43390-020-00226-x
doi: 10.1007/s43390-020-00226-x pubmed: 33113121
Cobetto N, Parent S, Aubin CE (2018) 3D correction over 2 years with anterior vertebral body growth modulation: a finite element analysis of screw positioning, cable tensioning and postoperative functional activities. Clin Biomech (Bristol, Avon) 51:26–33. https://doi.org/10.1016/j.clinbiomech.2017.11.007
doi: 10.1016/j.clinbiomech.2017.11.007 pubmed: 29169117
Cobetto N, Aubin CE, Parent S (2020) Anterior vertebral body growth modulation: assessment of the 2-year predictive capability of a patient-specific finite-element planning tool and of the growth modulation biomechanics. Spine 45(18):E1203–E1209. https://doi.org/10.1097/BRS.0000000000003533
doi: 10.1097/BRS.0000000000003533 pubmed: 32341305
Pasha S, Shen J, Kadoury S (2021) True 3D parameters of the spinal deformity in adolescent idiopathic scoliosis. Spine Deform 9(3):703–710. https://doi.org/10.1007/s43390-020-00254-7
doi: 10.1007/s43390-020-00254-7 pubmed: 33400230
Trobisch PD, Baroncini A (2021) Preliminary outcomes after vertebral body tethering (VBT) for lumbar curves and subanalysis of a 1- versus 2-tether construct. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cervical Spine Res Soc 30(12):3570–3576. https://doi.org/10.1007/s00586-021-07009-6
doi: 10.1007/s00586-021-07009-6
Cobetto N, Aubin CE, Parent S (2018) Contribution of lateral decubitus positioning and cable tensioning on immediate correction in anterior vertebral body growth modulation. Spine Deform 6(5):507–513. https://doi.org/10.1016/j.jspd.2018.01.013
doi: 10.1016/j.jspd.2018.01.013 pubmed: 30122385
Petit Y, Aubin CE, Labelle H (2004) Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med Biol Eng Comput 42(1):55–60. https://doi.org/10.1007/BF02351011
doi: 10.1007/BF02351011 pubmed: 14977223
Cobetto N, Aubin CE, Parent S (2018) Surgical planning and follow-up of anterior vertebral body growth modulation in pediatric idiopathic scoliosis using a patient-specific finite element model integrating growth modulation. Spine Deform 6(4):344–350. https://doi.org/10.1016/j.jspd.2017.11.006
doi: 10.1016/j.jspd.2017.11.006 pubmed: 29886903
Buyuk F, Larson AN, Milbrandt TA (2021) Measurable thoracic motion remains at 1 year following anterior vertebral body tethering, with sagittal motion greater than coronal motion. J Bone Joint Surg Am 103(24):2299–2305. https://doi.org/10.2106/JBJS.20.01533
doi: 10.2106/JBJS.20.01533 pubmed: 34270505
Mathew S, Larson AN, Milbrandt TA (2022) Measurable lumbar motion remains 1 year after vertebral body tethering. J Pediatr Orthop 42(8):e861–e867. https://doi.org/10.1097/BPO.0000000000002202
doi: 10.1097/BPO.0000000000002202 pubmed: 35878415

Auteurs

Sophie Martin (S)

Department of Mechanical Engineering, Polytechnique Montréal, Downtown Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada.

Nikita Cobetto (N)

Department of Mechanical Engineering, Polytechnique Montréal, Downtown Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada.
Research Center, Sainte-Justine University Hospital Center, 3175 Côte-Sainte-Catherine Road, Montreal, QC, H3T 1C5, Canada.

A Noelle Larson (AN)

Department of Orthopedic Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.

Carl-Eric Aubin (CE)

Department of Mechanical Engineering, Polytechnique Montréal, Downtown Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada. carl-eric.aubin@polymtl.ca.
Research Center, Sainte-Justine University Hospital Center, 3175 Côte-Sainte-Catherine Road, Montreal, QC, H3T 1C5, Canada. carl-eric.aubin@polymtl.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH