Cerium oxide nanoparticles (nCeO


Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Jun 2023
Historique:
received: 05 12 2022
accepted: 25 04 2023
medline: 14 6 2023
pubmed: 11 5 2023
entrez: 11 5 2023
Statut: ppublish

Résumé

Increased use of nano-cerium oxide (nCeO

Identifiants

pubmed: 37166732
doi: 10.1007/s11356-023-27313-6
pii: 10.1007/s11356-023-27313-6
doi:

Substances chimiques

ceric oxide 619G5K328Y
Biosolids 0
Soil 0
Cerium 30K4522N6T
Soil Pollutants 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

72336-72353

Informations de copyright

© 2023. Crown.

Références

Abbas Q, Yousaf B, Ali MU et al (2020) Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Environ Int 138:105646. https://doi.org/10.1016/J.ENVINT.2020.105646
doi: 10.1016/J.ENVINT.2020.105646
Ameen F, Alsamhary K, Alabdullatif JA, ALNadhari S (2021) A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol Environ Saf 213:112027. https://doi.org/10.1016/J.ECOENV.2021.112027
doi: 10.1016/J.ECOENV.2021.112027
Attarilar S, Yang J, Ebrahimi M et al (2020) The Toxicity Phenomenon and the Related Occurrence in Metal and Metal Oxide Nanoparticles: A Brief Review From the Biomedical Perspective. Front Bioeng Biotechnol 8:822. https://doi.org/10.3389/FBIOE.2020.00822/BIBTEX
doi: 10.3389/FBIOE.2020.00822/BIBTEX
Barbosa da Costa N, Fugère V, Hébert MP et al (2021) Resistance, resilience, and functional redundancy of freshwater bacterioplankton communities facing a gradient of agricultural stressors in a mesocosm experiment. Mol Ecol 30:4771–4788. https://doi.org/10.1111/MEC.16100
doi: 10.1111/MEC.16100
Barton LE, Auffan M, Bertrand M et al (2014) Transformation of Pristine and Citrate-Functionalized CeO2 Nanoparticles in a Laboratory-Scale Activated Sludge Reactor. Environ Sci Technol 48:7289–7296. https://doi.org/10.1021/es404946y
doi: 10.1021/es404946y
Brookes PC (1995) (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 194(19):269–279. https://doi.org/10.1007/BF00336094
doi: 10.1007/BF00336094
Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: A review. Pedobiologia (Jena) 49:637–644. https://doi.org/10.1016/j.pedobi.2005.06.003
doi: 10.1016/j.pedobi.2005.06.003
Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/NMETH.3869
doi: 10.1038/NMETH.3869
Cassee FR, Van Balen EC, Singh C et al (2011) Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol 41:213–229. https://doi.org/10.3109/10408444.2010.529105
doi: 10.3109/10408444.2010.529105
Charbgoo F, Ahmad M, Darroudi M (2017) Cerium oxide nanoparticles: green synthesis and biological applications. Int J Nanomedicine 12:1401–1413. https://doi.org/10.2147/IJN.S124855
doi: 10.2147/IJN.S124855
Collin B, Auffan M, Johnson AC et al (2014a) Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environ Sci Nano 1:533–548. https://doi.org/10.1039/C4EN00149D
doi: 10.1039/C4EN00149D
Collin B, Oostveen E, Tsyusko OV, Unrine JM (2014b) Influence of Natural Organic Matter and Surface Charge on the Toxicity and Bioaccumulation of Functionalized Ceria Nanoparticles in Caenorhabditis elegans. Environ Sci Technol 48:1280–1289. https://doi.org/10.1021/es404503c
doi: 10.1021/es404503c
Cornelis G, Kirby JK, Beak D et al (2010) A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils. Environ Chem 7:298–308. https://doi.org/10.1071/EN10013
doi: 10.1071/EN10013
Cornelis G, Ryan B, McLaughlin MJ et al (2011) Solubility and Batch Retention of CeO2 Nanoparticles in Soils. Environ Sci Technol 45:2777–2782. https://doi.org/10.1021/es103769k
doi: 10.1021/es103769k
Dahle JT, Arai Y (2015) Environmental geochemistry of cerium: Applications and toxicology of cerium oxide nanoparticles. Int J Environ Res Public Health 12:1253–1278. https://doi.org/10.3390/ijerph120201253
doi: 10.3390/ijerph120201253
Dahle JT, Livi K, Arai Y (2015) Effects of pH and phosphate on CeO2 nanoparticle dissolution. Chemosphere 119:1365–1371. https://doi.org/10.1016/j.chemosphere.2014.02.027
doi: 10.1016/j.chemosphere.2014.02.027
Dai Y, Chen F, Yue L et al (2020) Uptake, Transport, and Transformation of CeO2 Nanoparticles by Strawberry and Their Impact on the Rhizosphere Bacterial Community. ACS Sustain Chem Eng 8:4792–4800. https://doi.org/10.1021/acssuschemeng.9b07422
doi: 10.1021/acssuschemeng.9b07422
Environment Canada (2005) Guidance document on statistical methods for environmental toxicity tests. Methods Development and Application Section, Environmental Technology Center, Environment Canada, Ottawa, Ontario. http://publications.gc.ca/pub?id=9.559583&sl=0
Farhan Ul Haque M, Kalidass B, Bandow N et al (2015) Cerium regulates expression of alternative methanol dehydrogenases in Methylosinus trichosporium OB3b. Appl Environ Microbiol 81:7546–7552. https://doi.org/10.1128/AEM.02542-15
doi: 10.1128/AEM.02542-15
Farias IAP, Santos CCL dos, Sampaio FC (2018) Antimicrobial Activity of Cerium Oxide Nanoparticles on Opportunistic Microorganisms: A Systematic Review. Biomed Res Int 2018:1923606. https://doi.org/10.1155/2018/1923606
Garcia C, Hernandez T, Costa F (1997) Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun Soil Sci Plant Anal 28:123–134. https://doi.org/10.1080/00103629709369777
doi: 10.1080/00103629709369777
Gatoo MA, Naseem S, Arfat MY et al (2014) Physicochemical Properties of Nanomaterials: Implication in Associated Toxic Manifestations. Biomed Res Int 2014:498420. https://doi.org/10.1155/2014/498420
doi: 10.1155/2014/498420
Ge Y, Priester JH, Van De Werfhorst LC et al (2014) Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities. Environ Sci Technol 48:13489–13496. https://doi.org/10.1021/es5031646
doi: 10.1021/es5031646
Godoy-Vitorino F (2019) Human microbial ecology and the rising new medicine. Ann Transl Med 7:342–342. https://doi.org/10.21037/ATM.2019.06.56
doi: 10.21037/ATM.2019.06.56
Gu W, Semrau JD (2017) Copper and cerium-regulated gene expression in Methylosinus trichosporium OB3b. Appl Microbiol Biotechnol 101:8499–8516. https://doi.org/10.1007/s00253-017-8572-2
doi: 10.1007/s00253-017-8572-2
Guo B, Jiang J, Serem W et al (2019) Attachment of cerium oxide nanoparticles of different surface charges to kaolinite: Molecular and atomic mechanisms. Environ Res 177:108645. https://doi.org/10.1016/J.ENVRES.2019.108645
doi: 10.1016/J.ENVRES.2019.108645
Hamidat M, Barakat M, Ortet P et al (2016) Design Defines the Effects of Nanoceria at a Low Dose on Soil Microbiota and the Potentiation of Impacts by the Canola Plant. Environ Sci Technol 50:6892–6901. https://doi.org/10.1021/acs.est.6b01056
doi: 10.1021/acs.est.6b01056
Hibi Y, Asai K, Arafuka H et al (2011) Molecular structure of La
doi: 10.1016/j.jbiosc.2010.12.017
Ho A, Vlaeminck SE, Ettwig KF, Schneider B, Frenzel P, Boon N (2013) Revisiting methanotrophic communities in sewage treatment plants. Appl Environ Microbiol 79(8):2841–2846. https://doi.org/10.1128/AEM.03426-12
doi: 10.1128/AEM.03426-12
Hoppe M, Schlich K, Wielinski J et al (2019a) Long-term outdoor lysimeter study with cerium dioxide nanomaterial. NanoImpact 14:100170. https://doi.org/10.1016/j.impact.2019.100170
doi: 10.1016/j.impact.2019.100170
Hoppe M, Schlich K, Wielinski J et al (2019b) Long-term outdoor lysimeter study with cerium dioxide nanomaterial. NanoImpact 14:100170. https://doi.org/10.1016/j.impact.2019.100170
doi: 10.1016/j.impact.2019.100170
Hou J, You G, Xu Y et al (2015) Effects of CeO2 nanoparticles on biological nitrogen removal in a sequencing batch biofilm reactor and mechanism of toxicity. Bioresour Technol 191:73–78. https://doi.org/10.1016/j.biortech.2015.04.123
doi: 10.1016/j.biortech.2015.04.123
Houba VJG, Temminghoff EJM, Gaikhorst GA, van Vark W (2000) Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun Soil Sci Plant Anal 31:1299–1396. https://doi.org/10.1080/00103620009370514
doi: 10.1080/00103620009370514
Kamika I, Tekere M (2017) Impacts of cerium oxide nanoparticles on bacterial community in activated sludge. AMB Express 7(1). https://doi.org/10.1186/s13568-017-0365-6
Kapoor V, Phan D, Pasha ABMT (2018) Effects of metal oxide nanoparticles on nitrification in wastewater treatment systems: A systematic review. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng 53:659–668. https://doi.org/10.1080/10934529.2018.1438825
doi: 10.1080/10934529.2018.1438825
Keller AA, McFerran S, Lazareva A et al (2013) Global life cycle releases engineered nanomaterials. J Nanopart Res 15:1692. https://doi.org/10.1007/s11051-013-1692-4
doi: 10.1007/s11051-013-1692-4
Klose S, Acosta-Martínez V, Ajwa HA (2006) Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides. Soil Biol Biochem 38:1243–1254. https://doi.org/10.1016/j.soilbio.2005.09.025
doi: 10.1016/j.soilbio.2005.09.025
Knacker T, Van Gestel CAM, Jones SE et al (2004) Ring-Testing and Field-Validation of a Terrestrial Model Ecosystem (TME) - An Instrument for Testing Potentially Harmful Substances: Conceptual Approach and Study Design. Ecotoxicology 13:9–27. https://doi.org/10.1023/B:ECTX.0000012402.38786.01
doi: 10.1023/B:ECTX.0000012402.38786.01
Kraas M, Schlich K, Knopf B et al (2017) Long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora. Environ Toxicol Chem 36:3305–3313. https://doi.org/10.1002/etc.3904
doi: 10.1002/etc.3904
Kvas S, Rahn J, Engel K et al (2017) Development of a microbial test suite and data integration method for assessing microbial health of contaminated soil. J Microbiol Methods 143:66–77. https://doi.org/10.1016/j.mimet.2017.10.004
doi: 10.1016/j.mimet.2017.10.004
Layet C, Auffan M, Santaella C et al (2017) Evidence that Soil Properties and Organic Coating Drive the Phytoavailability of Cerium Oxide Nanoparticles. Environ Sci Technol 51:9756–9764. https://doi.org/10.1021/acs.est.7b02397
doi: 10.1021/acs.est.7b02397
Lead JR, Batley GE, Alvarez PJJ et al (2018) Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review. Environ Toxicol Chem 37:2029–2063. https://doi.org/10.1002/etc.4147
doi: 10.1002/etc.4147
Lehtovirta-Morley LE (2018) Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett 365:58. https://doi.org/10.1093/FEMSLE/FNY058
doi: 10.1093/FEMSLE/FNY058
Levard C, Hotze EM, Colman BP et al (2013) Sulfidation of silver nanoparticles: Natural antidote to their toxicity. Environ Sci Technol 47:13440–13448. https://doi.org/10.1021/es403527n
doi: 10.1021/es403527n
Li B, Chen Y, Liang WZ, Mu L, Bridges WC, Jacobson AR, Darnault CJ (2017) Influence of cerium oxide nanoparticles on the soil enzyme activities in a soil-grass microcosm system. Geoderma 299. https://doi.org/10.1016/j.geoderma.2017.03.027
Li X, Yang G (2004) Review on application of rare earth polishing powders in glass polishing. J Rare Earths 22:236–241
Limbach LK, Bereiter R, Muller E et al (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: Influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 42:5828
doi: 10.1021/es800091f
Liu Z, Malinowski CR, Sepúlveda MS (2022) Emerging trends in nanoparticle toxicity and the significance of using Daphnia as a model organism. Chemosphere 291:132941. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132941
doi: 10.1016/J.CHEMOSPHERE.2021.132941
Lombi E, Donner E, Taheri S et al (2013) Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ Pollut 176:193–197. https://doi.org/10.1016/J.ENVPOL.2013.01.029
doi: 10.1016/J.ENVPOL.2013.01.029
Luo J, Song Y, Liang J et al (2020) Elevated CO2 mitigates the negative effect of CeO2 and Cr2O3 nanoparticles on soil bacterial communities by alteration of microbial carbon use. Environ Pollut 263:114456. https://doi.org/10.1016/j.envpol.2020.114456
doi: 10.1016/j.envpol.2020.114456
Ma Y, Metch JW, Vejerano EP et al (2015) Microbial community response of nitrifying sequencing batch reactors to silver, zero-valent iron, titanium dioxide and cerium dioxide nanomaterials. Water Res 68:87–97. https://doi.org/10.1016/j.watres.2014.09.008
doi: 10.1016/j.watres.2014.09.008
McMurdie PJ, Holmes S (2013) Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One 8. https://doi.org/10.1371/journal.pone.0061217
Naumov AV (2008) Review of the world market of rare-earth metals. Russ J Non-Ferrous Met 49:14–22. https://doi.org/10.1007/s11981-008-1004-6
doi: 10.1007/s11981-008-1004-6
Organisation for Economic Co-operation and Development (2015) Working Party on Manufactured Nanomaterials, Dossier on Cerium Oxide. https://one.oecd.org/document/ENV/CHEM/NANO(2015)19/en/pdf
Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102:157–161. https://doi.org/10.1263/jbb.102.157
doi: 10.1263/jbb.102.157
Ontario Ministry of Agriculture, Food and Rural Affairs (1996) Guidelines for the utilization of biosolids and other wastes on agricultural lands. http://agrienvarchive.ca/bioenergy/download/guide_biosolids_1996.pdf
Parada J, Rubilar O, Fernández-Baldo MA et al (2018) The nanotechnology among US: are metal and metal oxides nanoparticles a nano or mega risk for soil microbial communities? Crit Rev Biotechnol 0:1–16. https://doi.org/10.1080/07388551.2018.1523865
doi: 10.1080/07388551.2018.1523865
Pelletier DA, Suresh AK, Holton GA et al (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76:7981–7989. https://doi.org/10.1128/AEM.00650-10
doi: 10.1128/AEM.00650-10
Pirmohamed T, Dowding JM, Singh S et al (2010) Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb) 46:2736–2738. https://doi.org/10.1039/b922024k
doi: 10.1039/b922024k
Pulido-Reyes G, Rodea-Palomares I, Das S et al (2015) Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states. Sci Rep 5(1):15613. https://doi.org/10.1038/SREP15613
doi: 10.1038/SREP15613
Rajeshkumar S, Naik P (2018) Synthesis and biomedical applications of Cerium oxide nanoparticles – A Review. Biotechnol Rep 17:1–5. https://doi.org/10.1016/j.btre.2017.11.008
doi: 10.1016/j.btre.2017.11.008
Rico CM, Johnson MG, Marcus MA (2018) Cerium oxide nanoparticles transformation at the root–soil interface of barley (Hordeum vulgare L.). Environ Sci Nano 5:1807–1812. https://doi.org/10.1039/C8EN00316E
doi: 10.1039/C8EN00316E
Rogers NJ, Franklin NM, Apte SC et al (2010) Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ Chem 7:50–60
doi: 10.1071/EN09123
Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315. https://doi.org/10.1016/S0038-0717(02)00074-3
doi: 10.1016/S0038-0717(02)00074-3
Samarajeewa AD, Velicogna JR, Princz JI et al (2017) Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil. Environ Pollut 220:504–513. https://doi.org/10.1016/j.envpol.2016.09.094
doi: 10.1016/j.envpol.2016.09.094
Samarajeewa AD, Velicogna JR, Schwertfeger DM et al (2021) Ecotoxicological effects of copper oxide nanoparticles (nCuO) on the soil microbial community in a biosolids-amended soil. Sci Total Environ 763:143037. https://doi.org/10.1016/j.scitotenv.2020.143037
doi: 10.1016/j.scitotenv.2020.143037
Samarajeewa AD, Velicogna JR, Schwertfeger DM et al (2019) Effect of silver nanoparticle contaminated biosolids on the soil microbial community. NanoImpact 14:100157. https://doi.org/10.1016/j.impact.2019.100157
doi: 10.1016/j.impact.2019.100157
Schlich K, Beule L, Hund-Rinke K (2016) Single versus repeated applications of CuO and Ag nanomaterials and their effect on soil microflora. Environ Pollut 215:322–330. https://doi.org/10.1016/j.envpol.2016.05.028
doi: 10.1016/j.envpol.2016.05.028
Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09
doi: 10.1128/AEM.01541-09
Schnecker J, Wild B, Hofhansl F et al (2014) Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated arctic soils. PLoS One 9(4):e94076. https://doi.org/10.1371/journal.pone.0094076
doi: 10.1371/journal.pone.0094076
Schwabe F, Schulin R, Rupper P et al (2014) Dissolution and transformation of cerium oxide nanoparticles in plant growth media. J Nanoparticle Res 16:2668. https://doi.org/10.1007/s11051-014-2668-8
doi: 10.1007/s11051-014-2668-8
Simonin M, Cantarel AAM, Crouzet A et al (2018) Negative Effects of Copper Oxide Nanoparticles on Carbon and Nitrogen Cycle Microbial Activities in Contrasting Agricultural Soils and in Presence of Plants. Front Microbiol 9:3102
doi: 10.3389/fmicb.2018.03102
Sherene T (2017) Role of Soil Enzymes in Nutrient Transformation: A Review. Bio Bull 3(1):109–131
Thill A, Zeyons O, Spalla O et al (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156. https://doi.org/10.1021/es060999b
doi: 10.1021/es060999b
Wang T, Liu W (2022) Emerging investigator series: metal nanoparticles in freshwater: transformation, bioavailability and effects on invertebrates. Environ Sci Nano 9(7):2237–2263. https://doi.org/10.1039/D2EN00052K
doi: 10.1039/D2EN00052K
Van Hoecke K, Quik JTK, Mankiewicz-Boczek J et al (2009) Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43:4537–4546. https://doi.org/10.1021/es9002444
doi: 10.1021/es9002444
Vittori Antisari L, Carbone S, Gatti A et al (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94. https://doi.org/10.1016/j.soilbio.2013.01.016
doi: 10.1016/j.soilbio.2013.01.016
Weber KP, Legge RL (2009) One-dimensional metric for tracking bacterial community divergence using sole carbon source utilization patterns. J Microbiol Methods 79:55–61
doi: 10.1016/j.mimet.2009.07.020
Weintraub MN, Scott-Denton LE, Schmidt SK, Monson RK (2007) The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 154:327–338. https://doi.org/10.1007/s00442-007-0804-1
doi: 10.1007/s00442-007-0804-1
Wu X, Neil CW, Kim D et al (2018) Co-effects of UV/H2O2 and natural organic matter on the surface chemistry of cerium oxide nanoparticles. Environ Sci Nano 5:2382–2393. https://doi.org/10.1039/C8EN00435H
doi: 10.1039/C8EN00435H
Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6:e90–e90. https://doi.org/10.1038/am.2013.88
doi: 10.1038/am.2013.88
Xu Y, Wang C, Hou J et al (2017) Long term effects of cerium dioxide nanoparticles on the nitrogen removal, micro-environment and community dynamics of a sequencing batch biofilm reactor. Bioresour Technol 245:573–580. https://doi.org/10.1016/j.biortech.2017.08.201
doi: 10.1016/j.biortech.2017.08.201
You G, Hou J, Xu Y et al (2021) Surface Properties and Environmental Transformations Controlling the Bioaccumulation and Toxicity of Cerium Oxide Nanoparticles: A Critical Review. Springer International Publishing, Cham, pp 1–52
Zhang C, Hu Z, Li P, Gajaraj S (2016a) Governing factors affecting the impacts of silver nanoparticles on wastewater treatment. Sci Total Environ 572:852–873. https://doi.org/10.1016/j.scitotenv.2016.07.145
doi: 10.1016/j.scitotenv.2016.07.145
Zhang M, Zhang C, Zhai X et al (2019) Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci China Mater 62:1727–1739. https://doi.org/10.1007/s40843-019-9471-7
doi: 10.1007/s40843-019-9471-7
Zhang W, Dan Y, Shi H, Ma X (2016b) Effects of Aging on the Fate and Bioavailability of Cerium Oxide Nanoparticles to Radish (Raphanus sativus L.) in Soil. ACS Sustain Chem Eng 4:5424–5431. https://doi.org/10.1021/acssuschemeng.6b00724
doi: 10.1021/acssuschemeng.6b00724
Zhang W, Schwab AP, White JC, Ma X (2018) Impact of Nanoparticle Surface Properties on the Attachment of Cerium Oxide Nanoparticles to Sand and Kaolin. J Environ Qual 47:129–138. https://doi.org/10.2134/jeq2017.07.0284
doi: 10.2134/jeq2017.07.0284

Auteurs

Ajith Dias Samarajeewa (A)

Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada. ajith.diassamarajeewa@ec.gc.ca.

Jessica R Velicogna (JR)

Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada.

Dina M Schwertfeger (DM)

Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada.

Matthew J Meier (MJ)

Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada.

Renuka M Subasinghe (RM)

Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada.

Juliska I Princz (JI)

Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada.

Rick P Scroggins (RP)

Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada.

Lee A Beaudette (LA)

Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal
Cameroon Humans Uranium Trace Elements Environmental Monitoring
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil

Classifications MeSH