Post-feeding Molecular Responses of Cobia (Rachycentron canadum): RNA-Sequencing as a Tool to Evaluate Postprandial Effects in Hepatic Lipid Metabolism.
Fasting
Fatty acid oxidation
Fatty acid synthesis
Gene expression
RNA-seq
Journal
Marine biotechnology (New York, N.Y.)
ISSN: 1436-2236
Titre abrégé: Mar Biotechnol (NY)
Pays: United States
ID NLM: 100892712
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
received:
28
11
2022
accepted:
17
04
2023
medline:
6
7
2023
pubmed:
10
5
2023
entrez:
10
5
2023
Statut:
ppublish
Résumé
We used transcriptome sequencing to investigate the hepatic postprandial responses of Rachycentron canadum (cobia), an important commercial fish species. In total, 150 cobia juveniles (50 per tank, triplicate) were fed ad libitum with a commercial diet for 7 days, fasted for 24 h, and fed for 10 min. The liver was sampled 10 min prior to feeding and 30 min, 1, 2, 4, 8, 12, and 24 h after the feeding event. Each sample was evaluated in terms of liver fatty acid profile and gene expression. Differential gene expressions were evaluated, focusing on fatty acid synthesis and oxidation pathways. In general, the liver fatty acid profile reflected diet composition. Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) levels increased at 8 to 12 h but decreased at 24 h after the feeding event. A high number of differentially expressed genes (DEGs) were observed comparing fish that fasted for 8 h with those fasted for 30 min and 24 h, while a reduced number of DEGs was observed comparing individuals who fasted for 30 min compared with those who fasted for 24 h. Similarly, the main differences in the expression of genes related to the fatty acid biosynthesis and oxidation pathways were noticed in individuals who fasted for 8 h compared with those who fasted for 30 min and 24 h. The results suggested that the adequate time to sample the individuals ranged between 8 and 12 h after the meal since, apparently, after 24 h, differential gene expression was not necessarily influenced by food intake.
Identifiants
pubmed: 37162622
doi: 10.1007/s10126-023-10209-4
pii: 10.1007/s10126-023-10209-4
doi:
Substances chimiques
Fatty Acids, Omega-3
0
Fatty Acids
0
Eicosapentaenoic Acid
AAN7QOV9EA
RNA
63231-63-0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
358-371Subventions
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2016/12435-0
Organisme : Fundação Coordenação de Projetos, Pesquisas e Estudos Tecnológicos
ID : 88882.365823/2019-01
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 305493/2019-1
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 304662/2017-8
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Alvarez MJ, Diez A, Lopez-Bote C, Gallego M, Bautista JM (2000) Short-term modulation of lipogenesis by macronutrients in rainbow trout (Oncorhynchus mykiss) hepatocytes. Br J Nutr 84:619–628
pubmed: 11177174
doi: 10.1017/S0007114500001951
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Araújo B, Salini M, Glencross B, Wade N (2016) The influence of dietary fatty acid and fasting on the hepatic lipid metabolism of barramundi (Lates calcarifer). Aquac Res 7:3879–3893
Araújo B, Wade MW, de Mello PH, Rodrigues-Filho JA, Garcia CEO, de Campos MF, Botwright N, Hashimoto DT, Moreira RG (2018) Characterization of lipid metabolism genes and the influence of fatty acid supplementation in the hepatic lipid metabolism of dusk grouper (Epinephelus marginatus). Comp Biochem Physis Part A 219:1–9
Araújo B, Rodriguez M, Honji RM, Rombenso AN, Rio-Zaragoza OB, Cano A, Tinajero A, Mata-Sotres JA, Viana MT (2021) Arachidonic acid modulated lipid metabolism and improved the productive performance of striped bass (Morone saxatilis) juveniles under sub- to optimal temperatures. Aquaculture 530:735939
doi: 10.1016/j.aquaculture.2020.735939
Aciole Barbosa D, Araujo BC, Branco GS, Simeone AS, Hilsdorf AWS, Jabes DL, Nunes LR, Moreira RG, Menegidio FB (2021) Transcriptome profiling and microsatellite identification in cobia (Rachycentron canadum), using high-throughput RNA sequencing. Mar Biotechnol 24:255–262
doi: 10.1007/s10126-021-10081-0
Bell JG, Sargent JR (2003) Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture 218:491–499
doi: 10.1016/S0044-8486(02)00370-8
Calduch-Giner JCA, Bermejo-Nogales A, Benedito-Palos L, Estensoro I, Ballester-Lozano G, Sitjà Bobadilla A, Pérez-Sánchez J (2013) Deep sequencing for de novo construction of a marine fish (Sparus aurata) transcriptome database with a large coverage of protein coding transcripts. BMC Genomics 14:178
pubmed: 23497320
pmcid: 3606596
doi: 10.1186/1471-2164-14-178
Christie WW (2003) Lipids analysis. The Oily Press, Bridgwater, p 298
Datsomor AK, Zic N, Li K, Olsen RE, Jin Y, Vik JO, Edvardsen RB, Grammes F, Wargelius A, Winge P (2019) CRISPR/Cas9-mediated ablation of elovl2 in Atlantic salmon (Salmo salar L.) inhibits elongation of polyunsaturated fatty acids and induces Srebp-1 and target genes. Sci Rep 7533
Diez A, Menoyo D, Perez-Benavente S, Calduch-Giner JA, Vega-Rubin de Celis S, Obach A, Favre-Krey L, Boukouvala E, Leaver MJ, Tocher DR, Perez-Sanchez J, Krey G, Bautista JM (2007) Conjugated linoleic acid affects lipid composition, metabolism, and gene expression in gilthead sea bream (Sparus aurata L). J Nutr 137:1363–1369
pubmed: 17513392
doi: 10.1093/jn/137.6.1363
Fisher H, Romano N, Renukdas N, Kumar V, Sinha AK (2022) Comparing black soldier fly (Hermetia illucens) larvae versus prepupae in the diets of largemouth bass, Micropterus salmoides: effects on their growth, biochemical composition, histopathology, and gene expression. Aquaculture 546:737323
doi: 10.1016/j.aquaculture.2021.737323
Folch J, Less M, Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–503
pubmed: 13428781
doi: 10.1016/S0021-9258(18)64849-5
Galaxy Community (2022) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res 50:W345–W351. Advance online publication. https://doi.org/10.1093/nar/gkac247
Gene Ontology Consortium (2023) The Gene Ontology Knowledgebase in 2023 Genetics, iyad031. Advance Online Publication. https://doi.org/10.1093/genetics/iyad031
doi: 10.1093/genetics/iyad031
Glencross BD (2009) Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev Aquac 1:71–124
doi: 10.1111/j.1753-5131.2009.01006.x
Glencross BD, De Santis C, Bicskei B, Taggart JB, Bron JE, Betancor MB, Tocher DR (2015) A comparative analysis of the response of the hepatic transcriptome to dietary docosahexaenoic acid in Atlantic salmon (Salmo salar) post-smolts. BMC Genomics 16:684
pubmed: 26345987
pmcid: 4562122
doi: 10.1186/s12864-015-1810-z
Gou N, Ji H, Chang Z, Zhong M, Deng W (2020) Effects of dietary essential fatty acid requirements on growth performance, fatty acid composition, biochemical parameters, antioxidant response and lipid related genes expression in juvenile Onychostoma macrolepis. Aquaculture 528:735590
doi: 10.1016/j.aquaculture.2020.735590
Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849
pubmed: 27207943
doi: 10.1093/bioinformatics/btw313
Hart AJ, Ginzburg S, Xu M, Fisher CR, Rahmatpour N, Mitton JB, Paul R, Wegrzyn JL (2020) EnTAP: bringing faster and smarter functional annotation to non-model eukaryotic transcriptomes. Mol Ecol Resour 20:591–604
pubmed: 31628884
doi: 10.1111/1755-0998.13106
Hernández-Plaza A, Szklarczyk D, Botas J, Cantalapiedra CP, Giner-Lamia J, Mende DR, Kirsch R, Rattei T, Letunic I, Jensen LJ, Bork P, von Mering C, Huerta-Cepas J (2023) eggNOG 6.0: enabling comparative genomics across 12 535 organisms. Nucleic Acids Res 51:D389–D394
pubmed: 36399505
doi: 10.1093/nar/gkac1022
Higgs DA, Dong FM (2000) Lipids and fatty acids. In: Stickney RR (ed) Encyclopedia of Aquaculture. John Wiley & Sons Inc, New York, pp 476–496
Jin M, Lu Y, Yuan Y, Li Y, Qiu H, Sun P, Ma H, Ding L, Zhou Q (2017) Regulation of growth, antioxidant capacity, fatty acid profiles, hematological characteristics and expression of lipid related genes by different dietary n-3 highly unsaturated fatty acids in juvenile black seabream (Acanthopagrus schlegelii). Aquaculture 471:55–65
doi: 10.1016/j.aquaculture.2017.01.004
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M (2023) KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 51:D587–D592
pubmed: 36300620
doi: 10.1093/nar/gkac963
Kanehisa M, Sato Y, Kawashima M (2022) KEGG mapping tools for uncovering hidden features in biological data. Protein Science: a Publication of the Protein Society 31:47–53
pubmed: 34423492
doi: 10.1002/pro.4172
Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360
pubmed: 25751142
pmcid: 4655817
doi: 10.1038/nmeth.3317
Kopylova E, Noé L, Touzet H (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28:3211–3217
pubmed: 23071270
doi: 10.1093/bioinformatics/bts611
Leaver MJ, Bautista JM, Björnsson LR, Jönsson E, Krey G, Tocher DR, Torstensen BE (2008) Towards fish lipid nutrigenomics: current state and prospects for fin-fish aquaculture. Rev Fish Sci 56:1064–1262
Magnanou E, Klopp C, Noirotm C, Besseau L, Falcon J (2014) Generation and characterization of the sea bass Dicentrarchus labrax brain and liver transcriptomes. Gene 544:56–66
pubmed: 24768179
doi: 10.1016/j.gene.2014.04.032
Manor ML, Weber GM, Cleveland BM, Yao J, Kenney PB (2015) Expression of genes associated with fatty acid metabolism during maturation in diploid and triploid female rainbow trout. Aquaculture 435:178–186
doi: 10.1016/j.aquaculture.2014.09.026
Marques VH, Moreira RG, Branco GS, Honji RM, Rombenso AN, Viana MT, Mello PH, Mata-Sotres JA, Araujo BC (2021) Different saturated and monounsaturated fatty acids levels in fish oil-free diets to cobia (Rachycentron canadum) juveniles: effects in growth performance and lipid metabolism. Aquaculture 541:736843
doi: 10.1016/j.aquaculture.2021.736843
Menegidio FB, Jabes DL, Costa de Oliveira R, Nunes LR (2018) Dugong: a Docker image, based on Ubuntu Linux, focused on reproducibility and replicability for bioinformatics analyses. Bioinformatics 34:514–515
pubmed: 28968637
doi: 10.1093/bioinformatics/btx554
Menegidio FB, Barbosa DA, Gonçalves RS, Nishime MM, Jabes DL, Oliveira RC, Nunes LR (2019) Bioportainer Workbench: a versatile and user-friendly system that integrates implementation, management, and use of bioinformatics resources in Docker environments. Giga Sci 8(4):giz041
Menoyo D, Lopez-Bote CJ, Bautista JM, Obach A (2003) Growth, digestibility, and fatty acid utilization in large Atlantic salmon (Salmo salar) fed varying levels of n-3 and saturated fatty acids. Aquaculture 225:295–307
doi: 10.1016/S0044-8486(03)00297-7
Mente E, Pierce GJ, Antonopoulou E, Stead D, Martin SAM (2017) Postprandial hepatic protein expression in trout Oncorhynchus mykiss a proteomics examination. Aquaculture 9:79–85
Mininni AN, Milan M, Ferrareso S, Petochi T, Marco PD, Marino G, Livi S, Romualdi C, Bargelloni L, Patarnello T (2014) Liver transcriptome analysis in gilthead sea bream upon exposure to low temperature. BMC Genomics 15:765
pubmed: 25194679
pmcid: 4167152
doi: 10.1186/1471-2164-15-765
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185
pubmed: 17526522
pmcid: 1933193
doi: 10.1093/nar/gkm321
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295
pubmed: 25690850
pmcid: 4643835
doi: 10.1038/nbt.3122
Poppi DA, Moore SS, Wade NM, Glencross BD (2019) Postprandial plasma free amino acid profile and hepatic gene expression in juvenile barramundi (Lates calcarifer) is more responsive to feed consumption than to dietary methionine inclusion. Aquaculture 501:345–358
doi: 10.1016/j.aquaculture.2018.11.044
Qian L, Qian W, Snowdon RJ (2014) Sub-genomic selection patterns as a signature of breeding in allopolyploid Brassica napus genome. BMC Genomics 15:1170
pubmed: 25539568
pmcid: 4367848
doi: 10.1186/1471-2164-15-1170
Rivas-Aravena A, Fuentes-Valenzuela M, Escobar -Aguirre S, Gallardo-Escarate C, Molina A, Valdés JA, (2019) Transcriptomic response of rainbow trout (Oncorhynchus mykiss) skeletal muscle to Flavobacterium psychrophilum. Comp Biochem Physiol Part D 31:100596
Rombenso AN, Trushenski JT, Jirsa D, Drawbridge M (2016) Docosahexaenoic acid (DHA) and arachidonic acid (ARA) are essential to meet LC-PUFA requirements of juvenile California yellowtail (Seriola dorsalis). Aquaculture 463:123–134
doi: 10.1016/j.aquaculture.2016.05.004
Seiliez I, Medale F, Aguirre P, Larquier M, Lanneretonne L, Alami-Durante H, Panserat S, Skiba-Cassy S (2013) Postprandial Regulation of Growth- and Metabolism-Related Factors in Zebrafish 10:237–248
pubmed: 23659367
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 19:3210–3212
Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184
doi: 10.1080/713610925
Torstensen BE, Nanton DA, Olsvik PA, Sundvold H, Stubhaug I (2009) Gene expression of fatty acid-binding proteins, fatty acid transport proteins (cd36 and FATP) and β-oxidation-related genes in Atlantic salmon (Salmo salar L.) fed fish oil or vegetable oil. Aquacult Nut 15:440–451
doi: 10.1111/j.1365-2095.2008.00609.x
Trapnell C, Willians BA, Pertea G, Mortavazi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515
pubmed: 20436464
pmcid: 3146043
doi: 10.1038/nbt.1621
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–579
pubmed: 22383036
pmcid: 3334321
doi: 10.1038/nprot.2012.016
Turchini GM, Torstensen BE, Ng WK (2009) Fish oil replacement in finfish nutrition. Rev Aquac 1:10–57
doi: 10.1111/j.1753-5131.2008.01001.x
UniProt Consortium (2023) UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res 51:D523–D531
doi: 10.1093/nar/gkac1052
Valente LMP, Bower NI, Johnston IA (2012) Postprandial expression of growth-related genes in Atlantic salmon (Salmo salar L.) juveniles fasted for 1 week and fed a single meal to satiation. Br J Nutr 108:2148–2157
pubmed: 22464448
doi: 10.1017/S0007114512000396
Wade NM, Skyba-Cassy S, Dias K, Glencross BD (2014) Postprandial molecular responses in the liver of the barramundi. Lates Calcarifer Fish Physiol Biochem 40:427–443
pubmed: 23990285
doi: 10.1007/s10695-013-9854-y
Zhang M, Chen C, You C, Chen B, Wang S, Li Y (2019) Effects of different dietary ratios of docosahexaenoic to eicosapentaenoic acid (DHA/EPA) on the growth, nonspecific immune indices, tissue fatty acid compositions and expression of genes related to LC-PUFA biosynthesis in juvenile golden pompano Trachinotus ovatus. Aquaculture 505:488–495
doi: 10.1016/j.aquaculture.2019.01.061
Zhao Y, Zhang C, Zhou H, Song L, Wang J, Zhao J (2020) Transcriptome changes for Nile tilapia (Oreochromis niloticus) in response to alkalinity stress. Comp Biochem Physiol 33:100651
Zheng XZ, Tocher DR, Dickson CA, Bell JB, Teale AJ (2004) Effects of diets containing vegetable oil on expression of genes involved in highly unsaturated fatty acid biosynthesis in liver of Atlantic salmon. Aquaculture 234:467–483
doi: 10.1016/j.aquaculture.2004.02.003