Photoactivatable surfaces resolve the impact of gravity vector on collective cell migratory characteristics.
Gravity
actomyosin bundle
collective cell migration
cytoskeletal remodeling
Journal
Science and technology of advanced materials
ISSN: 1468-6996
Titre abrégé: Sci Technol Adv Mater
Pays: United States
ID NLM: 101614420
Informations de publication
Date de publication:
2023
2023
Historique:
medline:
8
5
2023
pubmed:
8
5
2023
entrez:
8
5
2023
Statut:
epublish
Résumé
Despite considerable interest in the impact of space travel on human health, the influence of the gravity vector on collective cell migration remains unclear. This is primarily because of the difficulty in inducing collective migration, where cell clusters appear in an inverted position against gravity, without cellular damage. In this study, photoactivatable surfaces were used to overcome this challenge. Photoactivatable surfaces enable the formation of geometry-controlled cellular clusters and the remote induction of cellular migration via photoirradiation, thereby maintaining the cells in the inverted position. Substrate inversion preserved the circularity of cellular clusters compared to cells in the normal upright position, with less leader cell appearance. Furthermore, the inversion of cells against the gravity vector resulted in the remodeling of the cytoskeletal system via the strengthening of external actin bundles. Within the 3D cluster architecture, enhanced accumulation of active myosin was observed in the upper cell-cell junction, with a flattened apical surface. Depending on the gravity vector, attenuating actomyosin activity correlates with an increase in the number of leader cells, indicating the importance of cell contractility in collective migration phenotypes and cytoskeletal remodeling.
Identifiants
pubmed: 37151805
doi: 10.1080/14686996.2023.2206525
pii: 2206525
pmc: PMC10158565
doi:
Types de publication
Journal Article
Langues
eng
Pagination
2206525Informations de copyright
© 2023 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.
Déclaration de conflit d'intérêts
No potential conflict of interest was reported by the author(s).
Références
Sci China Life Sci. 2010 Sep;53(9):1085-91
pubmed: 21104368
J Physiol Sci. 2020 Mar 14;70(1):17
pubmed: 32169037
Nat Cell Biol. 2021 Jul;23(7):745-757
pubmed: 34155382
Integr Biol (Camb). 2010 Nov;2(11-12):568-74
pubmed: 20886167
Analyst. 2015 May 21;140(10):3623-9
pubmed: 25868456
Nat Cell Biol. 2014 Mar;16(3):217-23
pubmed: 24561621
Chem Asian J. 2014 Feb;9(2):406-17
pubmed: 24339448
Sci Rep. 2020 Jan 9;10(1):104
pubmed: 31919399
Cold Spring Harb Perspect Biol. 2017 Jul 5;9(7):
pubmed: 28679638
Sci Rep. 2015 Jan 07;5:7656
pubmed: 25563751
Biomaterials. 2012 Mar;33(8):2409-18
pubmed: 22197568
Chem Rec. 2017 Jun;17(6):611-621
pubmed: 27996194
Biointerphases. 2013 Dec;8(1):32
pubmed: 24706149
Nat Cell Biol. 2015 Nov;17(11):1435-45
pubmed: 26414403
PLoS One. 2014 Mar 14;9(3):e91875
pubmed: 24632806
J Cell Biol. 2005 Oct 10;171(1):153-64
pubmed: 16216928
FASEB J. 2017 Feb;31(2):802-813
pubmed: 27871065
Int J Mol Sci. 2022 May 30;23(11):
pubmed: 35682810
Nat Phys. 2019 Apr;15:393-402
pubmed: 30984281
Nat Mater. 2022 Oct;21(10):1200-1210
pubmed: 35637338
Sci Technol Adv Mater. 2011 Jul 7;12(4):044608
pubmed: 27877416
Biomaterials. 2018 Jul;169:72-84
pubmed: 29655082
Acta Biomater. 2016 Jul 15;39:106-113
pubmed: 27163400
Cytotechnology. 2002 Sep;39(3):147-54
pubmed: 19003307
Anal Sci. 2016;32(11):1183-1188
pubmed: 27829623
Biol Cell. 2017 Apr;109(4):139-161
pubmed: 28220498
Curr Biol. 2013 Apr 22;23(8):731-6
pubmed: 23562268
In Vitro. 1978 Feb;14(2):165-73
pubmed: 352912
Trends Cell Biol. 2019 Feb;29(2):150-163
pubmed: 30385150
Langmuir. 2019 Jun 11;35(23):7459-7468
pubmed: 30379076
Methods Mol Biol. 2018;1749:11-19
pubmed: 29525986
Int J Mol Sci. 2021 Mar 15;22(6):
pubmed: 33803957