In vivo secondary structural analysis of Influenza A virus genomic RNA.

Chemical mapping Conserved RNA motifs Influenza A virus (IAV) Mutational profiling (MaP) Next-generation sequencing (NGS) RNA secondary structure

Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
02 May 2023
Historique:
received: 28 10 2022
accepted: 19 03 2023
revised: 19 03 2023
medline: 4 5 2023
pubmed: 3 5 2023
entrez: 2 5 2023
Statut: epublish

Résumé

Influenza A virus (IAV) is a respiratory virus that causes epidemics and pandemics. Knowledge of IAV RNA secondary structure in vivo is crucial for a better understanding of virus biology. Moreover, it is a fundament for the development of new RNA-targeting antivirals. Chemical RNA mapping using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) coupled with Mutational Profiling (MaP) allows for the thorough examination of secondary structures in low-abundance RNAs in their biological context. So far, the method has been used for analyzing the RNA secondary structures of several viruses including SARS-CoV-2 in virio and in cellulo. Here, we used SHAPE-MaP and dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) for genome-wide secondary structure analysis of viral RNA (vRNA) of the pandemic influenza A/California/04/2009 (H1N1) strain in both in virio and in cellulo environments. Experimental data allowed the prediction of the secondary structures of all eight vRNA segments in virio and, for the first time, the structures of vRNA5, 7, and 8 in cellulo. We conducted a comprehensive structural analysis of the proposed vRNA structures to reveal the motifs predicted with the highest accuracy. We also performed a base-pairs conservation analysis of the predicted vRNA structures and revealed many highly conserved vRNA motifs among the IAVs. The structural motifs presented herein are potential candidates for new IAV antiviral strategies.

Identifiants

pubmed: 37131079
doi: 10.1007/s00018-023-04764-1
pii: 10.1007/s00018-023-04764-1
pmc: PMC10153785
doi:

Substances chimiques

RNA, Viral 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

136

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM132185
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01GM132185
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01GM133810
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

Parvez MK, Parveen S (2017) Evolution and emergence of pathogenic viruses: past, present, and future. Intervirology 60:1–7. https://doi.org/10.1159/000478729
doi: 10.1159/000478729 pubmed: 28772262
Alvarez-Munoz S, Upegui-Porras N, Gomez AP, Ramirez-Nieto G (2021) Key factors that enable the pandemic potential of rna viruses and inter-species transmission: a systematic review. Viruses 13:537. https://doi.org/10.3390/v13040537
doi: 10.3390/v13040537 pubmed: 33804942 pmcid: 8063802
Woolhouse MEJ, Brierley L (2018) Epidemiological characteristics of human-infective RNA viruses. Sci Data 5:180017. https://doi.org/10.1038/sdata.2018.17
doi: 10.1038/sdata.2018.17 pubmed: 29461515 pmcid: 5819479
Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S (2017) Are RNA viruses candidate agents for the next global pandemic? A review. ILAR J 58:343–358. https://doi.org/10.1093/ilar/ilx026
doi: 10.1093/ilar/ilx026 pubmed: 28985316
da Costa VG, Saivish MV, Santos DER et al (2020) Comparative epidemiology between the 2009 H1N1 influenza and COVID-19 pandemics. J Infect Public Health 13:1797–1804. https://doi.org/10.1016/j.jiph.2020.09.023
doi: 10.1016/j.jiph.2020.09.023 pubmed: 33121906 pmcid: 7553061
Daemi HB, Kulyar MF-A, He X et al (2021) Progression and trends in virus from influenza A to COVID-19: an overview of recent studies. Viruses 13:1145. https://doi.org/10.3390/v13061145
doi: 10.3390/v13061145 pubmed: 34203647 pmcid: 8232279
Moya A, Holmes EC, González-Candelas F (2004) The population genetics and evolutionary epidemiology of RNA viruses. Nat Rev Microbiol 2:279–288. https://doi.org/10.1038/nrmicro863
doi: 10.1038/nrmicro863 pubmed: 15031727 pmcid: 7096949
de Wit E, Fouchier RAM (2008) Emerging influenza. J Clin Virol 41:1–6. https://doi.org/10.1016/j.jcv.2007.10.017
doi: 10.1016/j.jcv.2007.10.017 pubmed: 18340670 pmcid: 2768345
Gust ID, Hampson AW, Lavanchy D (2001) Planning for the next pandemic of influenza. Rev Med Virol 11:59–70. https://doi.org/10.1002/rmv.301
doi: 10.1002/rmv.301 pubmed: 11241802
Drexler JF, Corman VM, Drosten C (2014) Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res 101:45–56. https://doi.org/10.1016/j.antiviral.2013.10.013
doi: 10.1016/j.antiviral.2013.10.013 pubmed: 24184128
Shao W, Li X, Goraya MU et al (2017) Evolution of influenza a virus by mutation and re-assortment. Int J Mol Sci 18:1650. https://doi.org/10.3390/ijms18081650
doi: 10.3390/ijms18081650 pubmed: 28783091 pmcid: 5578040
Villa TG, Abril AG, Sánchez S et al (2021) Animal and human RNA viruses: genetic variability and ability to overcome vaccines. Arch Microbiol 203:443–464. https://doi.org/10.1007/s00203-020-02040-5
doi: 10.1007/s00203-020-02040-5 pubmed: 32989475
Centers for Disease Control and Prevention; Antiviral Drug Resistance among Influenza Viruses. https://www.cdc.gov/flu/professionals/antivirals/antiviral-drug-resistance.htm
Dhakal S, Klein SL (2019) Host factors impact vaccine efficacy: implications for seasonal and universal influenza vaccine programs. Am Soc Microbiol J Virol. https://doi.org/10.1128/JVI.00797-19
doi: 10.1128/JVI.00797-19
Lee N, Le Sage V, Nanni AV et al (2017) Genome-wide analysis of influenza viral RNA and nucleoprotein association. Nucleic Acids Res 45:8968–8977. https://doi.org/10.1093/nar/gkx584
doi: 10.1093/nar/gkx584 pubmed: 28911100 pmcid: 5587783
Resa-Infante P, Jorba N, Coloma R, Ortin J (2011) The influenza virus RNA synthesis machine. RNA Biol 8:207–215. https://doi.org/10.4161/rna.8.2.14513
doi: 10.4161/rna.8.2.14513 pubmed: 21358279 pmcid: 3127100
Le Sage V, Kanarek JP, Snyder DJ et al (2020) Mapping of Influenza Virus RNA-RNA Interactions Reveals a Flexible Network. Cell Rep 31:107823. https://doi.org/10.1016/j.celrep.2020.107823
doi: 10.1016/j.celrep.2020.107823 pubmed: 32610124 pmcid: 7372595
Dadonaite B, Gilbertson B, Knight ML et al (2019) The structure of the influenza A virus genome. Nat Microbiol 4:1781–1789. https://doi.org/10.1038/s41564-019-0513-7
doi: 10.1038/s41564-019-0513-7 pubmed: 31332385 pmcid: 7191640
Li X, Gu M, Zheng Q et al (2021) Packaging signal of influenza A virus. Virol J 18:36. https://doi.org/10.1186/s12985-021-01504-4
doi: 10.1186/s12985-021-01504-4 pubmed: 33596956 pmcid: 7890907
Ferhadian D, Contrant M, Printz-Schweigert A et al (2018) Structural and functional motifs in influenza virus RNAs. Front Microbiol 9:1–11. https://doi.org/10.3389/fmicb.2018.00559
doi: 10.3389/fmicb.2018.00559
Ye L, Ambi UB, Olguin-Nava M et al (2021) RNA structures and their role in selective genome packaging. Viruses 13:1788. https://doi.org/10.3390/v13091788
doi: 10.3390/v13091788 pubmed: 34578369 pmcid: 8472981
Noble E, Mathews DH, Chen JL et al (2011) Biophysical analysis of influenza A Virus RNA promoter at physiological temperatures. J Biol Chem 286:22965–22970. https://doi.org/10.1074/jbc.M111.239509
doi: 10.1074/jbc.M111.239509 pubmed: 21555520 pmcid: 3123064
Lenartowicz E, Nogales A, Kierzek E et al (2016) Antisense oligonucleotides targeting influenza A segment 8 genomic RNA inhibit viral replication. Nucleic Acid Ther 26:277–285. https://doi.org/10.1089/nat.2016.0619
doi: 10.1089/nat.2016.0619 pubmed: 27463680 pmcid: 5067832
Michalak P, Soszynska-Jozwiak M, Biala E et al (2019) Secondary structure of the segment 5 genomic RNA of influenza A virus and its application for designing antisense oligonucleotides. Sci Rep 9:3801. https://doi.org/10.1038/s41598-019-40443-7
doi: 10.1038/s41598-019-40443-7 pubmed: 30846846 pmcid: 6406010
Soszynska-Jozwiak M, Michalak P, Moss WN et al (2017) Influenza virus segment 5 (+) RNA - Secondary structure and new targets for antiviral strategies. Sci Rep 7:1–15. https://doi.org/10.1038/s41598-017-15317-5
doi: 10.1038/s41598-017-15317-5
Siegfried NA, Busan S, Rice GM et al (2014) RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Methods 11:959–965. https://doi.org/10.1038/nmeth.3029
doi: 10.1038/nmeth.3029 pubmed: 25028896 pmcid: 4259394
Smola MJ, Weeks KM (2018) In-cell RNA structure probing with SHAPE-MaP. Nat Protoc 13:1181–1195. https://doi.org/10.1038/nprot.2018.010
doi: 10.1038/nprot.2018.010 pubmed: 29725122 pmcid: 6402486
Zubradt M, Gupta P, Persad S et al (2016) DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods 14:75–82
doi: 10.1038/nmeth.4057 pubmed: 27819661 pmcid: 5508988
Busan S, Weidmann CA, Sengupta A, Weeks KM (2019) Guidelines for SHAPE reagent choice and detection strategy for RNA structure probing studies. Biochemistry 58:2655–2664. https://doi.org/10.1021/acs.biochem.8b01218
doi: 10.1021/acs.biochem.8b01218 pubmed: 31117385
Wang PY, Sexton AN, Culligan WJ, Simon MD (2019) Carbodiimide reagents for the chemical probing of RNA structure in cells. RNA 25:135–146. https://doi.org/10.1261/rna.067561.118
doi: 10.1261/rna.067561.118 pubmed: 30389828 pmcid: 6298570
Iii DM, Renda AJ, Douds CA et al (2019) In vivo RNA structural probing of uracil and guanine carbodiimide (EDC). RNA 25:147–157. https://doi.org/10.1261/rna.067868.118.RNA
doi: 10.1261/rna.067868.118.RNA
Mitchell D, Ritchey LE, Park H et al (2018) Glyoxals as in vivo RNA structural probes of guanine base-pairing. RNA 24:114–124. https://doi.org/10.1261/rna.064014.117
doi: 10.1261/rna.064014.117 pubmed: 29030489 pmcid: 5733565
Lenartowicz E, Kesy J, Ruszkowska A et al (2016) Self-folding of naked segment 8 genomic RNA of influenza a virus. PLoS ONE 11:1–21. https://doi.org/10.1371/journal.pone.0148281
doi: 10.1371/journal.pone.0148281
Michalak P, Piasecka J, Szutkowska B et al (2021) Conserved Structural motifs of two distant IAV subtypes in. Viruses 13:1–14
doi: 10.3390/v13030525
Ruszkowska A, Lenartowicz E, Moss WN et al (2016) Secondary structure model of the naked segment 7 influenza A virus genomic RNA. Biochem J 473:4327–4348. https://doi.org/10.1042/BCJ20160651
doi: 10.1042/BCJ20160651 pubmed: 27694388
Soszynska-Jozwiak M, Pszczola M, Piasecka J et al (2021) Universal and strain specific structure features of segment 8 genomic RNA of influenza A virus – application of 4-thiouridine photocrosslinking. J Biol Chem 297:101245. https://doi.org/10.1016/j.jbc.2021.101245
doi: 10.1016/j.jbc.2021.101245 pubmed: 34688660 pmcid: 8666676
Szutkowska B, Wieczorek K, Kierzek R et al (2022) Secondary structure of influenza A virus genomic segment 8 RNA folded in a cellular environment. Int J Mol Sci 23:2452. https://doi.org/10.3390/ijms23052452
doi: 10.3390/ijms23052452 pubmed: 35269600 pmcid: 8910647
Baker SF, Guo H, Albrecht RA et al (2013) Protection against lethal influenza with a viral mimic. J Virol 87:8591–8605. https://doi.org/10.1128/JVI.01081-13
doi: 10.1128/JVI.01081-13 pubmed: 23720727 pmcid: 3719819
Zmora P, Blazejewska P, Moldenhauer A-S et al (2014) DESC1 and MSPL activate influenza A viruses and emerging coronaviruses for host cell entry. J Virol 88:12087–12097. https://doi.org/10.1128/jvi.01427-14
doi: 10.1128/jvi.01427-14 pubmed: 25122802 pmcid: 4178745
Smola MJ, Rice GM, Busan S et al (2015) Selective 2’-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat Protoc 10:1643–1669. https://doi.org/10.1038/nprot.2015.103
doi: 10.1038/nprot.2015.103 pubmed: 26426499 pmcid: 4900152
Hoffmann E, Stech J, Guan Y et al (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146:2275–2289. https://doi.org/10.1007/s007050170002
doi: 10.1007/s007050170002 pubmed: 11811679
Illumina Inc (2015) Sequencing the rapidly evolving influenza A virus on the MiSeq system, pp 1–4
Spitale RC, Crisalli P, Flynn RA et al (2013) RNA SHAPE analysis in living cells. Nat Chem Biol 9:18–20. https://doi.org/10.1038/nchembio.1131
doi: 10.1038/nchembio.1131 pubmed: 23178934
Busan S, Weeks KM (2018) Accurate detection of chemical modifications in RNA by mutational profiling (MaP) with ShapeMapper 2. RNA 24:143–148. https://doi.org/10.1261/rna.061945.117
doi: 10.1261/rna.061945.117 pubmed: 29114018 pmcid: 5769742
Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084
doi: 10.1002/jcc.20084 pubmed: 15264254
Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129. https://doi.org/10.1186/1471-2105-11-129
doi: 10.1186/1471-2105-11-129 pubmed: 20230624 pmcid: 2984261
Mathews DH (2004) Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 10:1178–1190. https://doi.org/10.1261/rna.7650904
doi: 10.1261/rna.7650904 pubmed: 15272118 pmcid: 1370608
Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci 106:97–102. https://doi.org/10.1073/pnas.0806929106
doi: 10.1073/pnas.0806929106 pubmed: 19109441
Mathews DH, Disney MD, Childs JL et al (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 101:7287–7292. https://doi.org/10.1073/pnas.0401799101
doi: 10.1073/pnas.0401799101 pubmed: 15123812 pmcid: 409911
Lu ZJ, Gloor JW, Mathews DH (2009) Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA 15:1805–1813. https://doi.org/10.1261/rna.1643609
doi: 10.1261/rna.1643609 pubmed: 19703939 pmcid: 2743040
Anger AM, Armache JP, Berninghausen O et al (2013) Structures of the human and Drosophila 80S ribosome. Nature 497:80–85. https://doi.org/10.1038/nature12104
doi: 10.1038/nature12104 pubmed: 23636399
Williams GD, Townsend D, Wylie KM et al (2018) Nucleotide resolution mapping of influenza A virus nucleoprotein-RNA interactions reveals RNA features required for replication. Nat Commun 9:1–12. https://doi.org/10.1038/s41467-018-02886-w
doi: 10.1038/s41467-018-02886-w
Li H, Aviran S (2018) Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes. Nat Commun 9:606. https://doi.org/10.1038/s41467-018-02923-8
doi: 10.1038/s41467-018-02923-8 pubmed: 29426922 pmcid: 5807309
Bolte H, Rosu ME, Hagelauer E et al (2019) Packaging of the Influenza Virus Genome Is Governed by a Plastic Network of RNA- and Nucleoprotein-Mediated Interactions. J Virol 93:1–11. https://doi.org/10.1128/jvi.01861-18
doi: 10.1128/jvi.01861-18
Miyamoto S, Muramoto Y, Shindo K et al (2022) Contribution of RNA-RNA Interactions Mediated by the Genome Packaging Signals for the Selective Genome Packaging of Influenza A Virus. J Virol 96:e0164121. https://doi.org/10.1128/JVI.01641-21
doi: 10.1128/JVI.01641-21 pubmed: 35044211
Iselin L, Palmalux N, Kamel W et al (2022) Uncovering viral RNA–host cell interactions on a proteome-wide scale. Trends Biochem Sci 47:23–38. https://doi.org/10.1016/j.tibs.2021.08.002
doi: 10.1016/j.tibs.2021.08.002 pubmed: 34509361 pmcid: 9187521
Ritchey LE, Su Z, Tang Y et al (2017) Structure-seq2: sensitive and accurate genome-wide profiling of RNA structure in vivo. Nucleic Acids Res 45:e135. https://doi.org/10.1093/nar/gkx533
doi: 10.1093/nar/gkx533 pubmed: 28637286 pmcid: 5737731
Ding Y, Tang Y, Kwok CK et al (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505:696–700. https://doi.org/10.1038/nature12756
doi: 10.1038/nature12756 pubmed: 24270811
Ding Y, Kwok CK, Tang Y et al (2015) Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq. Nat Protoc 10:1050–1066. https://doi.org/10.1038/nprot.2015.064
doi: 10.1038/nprot.2015.064 pubmed: 26086407
Madden EA, Plante KS, Morrison CR et al (2020) Using SHAPE-MaP To Model RNA Secondary Structure and Identify 3’UTR Variation in Chikungunya Virus. J Virol 94:e00701-e720. https://doi.org/10.1128/JVI.00701-20
doi: 10.1128/JVI.00701-20 pubmed: 32999019 pmcid: 7925192
Manfredonia I, Nithin C, Ponce-Salvatierra A et al (2020) Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements. Nucleic Acids Res 48:12436–12452. https://doi.org/10.1093/nar/gkaa1053
doi: 10.1093/nar/gkaa1053 pubmed: 33166999 pmcid: 7736786
Huston NC, Wan H, Strine MS et al (2021) Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol Cell 81:584–598. https://doi.org/10.1016/j.molcel.2020.12.041
doi: 10.1016/j.molcel.2020.12.041 pubmed: 33444546 pmcid: 7775661
Cao C, Cai Z, Xiao X et al (2021) The architecture of the SARS-CoV-2 RNA genome inside virion. Nat Commun 12:3917. https://doi.org/10.1038/s41467-021-22785-x
doi: 10.1038/s41467-021-22785-x pubmed: 34168138 pmcid: 8225788
Mauger DM, Golden M, Yamane D et al (2015) Functionally conserved architecture of hepatitis C virus RNA genomes. Proc Natl Acad Sci 112:3692–3697. https://doi.org/10.1073/pnas.1416266112
doi: 10.1073/pnas.1416266112 pubmed: 25775547 pmcid: 4378395
Huber RG, Lim XN, Ng WC et al (2019) Structure mapping of dengue and Zika viruses reveals functional long-range interactions. Nat Commun 10:1408. https://doi.org/10.1038/s41467-019-09391-8
doi: 10.1038/s41467-019-09391-8 pubmed: 30926818 pmcid: 6441010
Lavender CA, Gorelick RJ, Weeks KM (2015) Structure-based alignment and consensus secondary structures for three HIV-related RNA genomes. PLoS Comput Biol 11:e1004230. https://doi.org/10.1371/journal.pcbi.1004230
doi: 10.1371/journal.pcbi.1004230 pubmed: 25992893 pmcid: 4439019
Kim H, Webster RG, Webby RJ (2018) Influenza virus: dealing with a drifting and shifting pathogen. Viral Immunol 31:174–183. https://doi.org/10.1089/vim.2017.0141
doi: 10.1089/vim.2017.0141 pubmed: 29373086
Szabat M, Lorent D, Czapik T et al (2020) RNA secondary structure as a first step for rational design of the oligonucleotides towards inhibition of influenza a virus replication. Pathogens 9:1–19. https://doi.org/10.3390/pathogens9110925
doi: 10.3390/pathogens9110925
Mathews DH (2014) RNA secondary structure analysis using RNAstructure. Curr Protoc Bioinforma 46:1–25. https://doi.org/10.1002/0471250953.bi1206s46
doi: 10.1002/0471250953.bi1206s46
Simon LM, Morandi E, Luganini A et al (2019) In vivo analysis of influenza A mRNA secondary structures identifies critical regulatory motifs. Nucleic Acids Res 47:7003–7017. https://doi.org/10.1093/nar/gkz318
doi: 10.1093/nar/gkz318 pubmed: 31053845 pmcid: 6648356
Ziv O, Price J, Shalamova L et al (2020) The Short- and Long-Range RNA-RNA Interactome of SARS-CoV-2. Mol Cell 80:1067–1077. https://doi.org/10.1016/j.molcel.2020.11.004
doi: 10.1016/j.molcel.2020.11.004 pubmed: 33259809 pmcid: 7643667
Fricke M, Dünnes N, Zayas M et al (2015) Conserved RNA secondary structures and long-range interactions in hepatitis C viruses. RNA 21:1219–1232. https://doi.org/10.1261/rna.049338.114
doi: 10.1261/rna.049338.114 pubmed: 25964384 pmcid: 4478341
Chang S, Sun D, Liang H et al (2015) Cryo-EM Structure of Influenza Virus RNA Polymerase Complex at 4.3Å Resolution. Mol Cell 57:925–935. https://doi.org/10.1016/j.molcel.2014.12.031
doi: 10.1016/j.molcel.2014.12.031 pubmed: 25620561
Gultyaev A, Tsyganov-Bodounov A, Spronken MIJ et al (2014) RNA structural constraints in the evolution of the influenza A virus genome NP segment. RNA Biol 11:942–952. https://doi.org/10.4161/rna.29730
doi: 10.4161/rna.29730 pubmed: 25180940 pmcid: 4179967
Nakano M, Sugita Y, Kodera N et al (2021) Ultrastructure of influenza virus ribonucleoprotein complexes during viral RNA synthesis. Commun Biol 4:858. https://doi.org/10.1038/s42003-021-02388-4
doi: 10.1038/s42003-021-02388-4 pubmed: 34244608 pmcid: 8271009
Chou Y, Heaton NS, Gao Q et al (2013) Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis. PLoS Pathog 9:e1003358. https://doi.org/10.1371/journal.ppat.1003358
doi: 10.1371/journal.ppat.1003358 pubmed: 23671419 pmcid: 3649991
Elhefnawi M, Alaidi O, Mohamed N et al (2011) Identification of novel conserved functional motifs across most Influenza A viral strains. Virol J 8:1–10. https://doi.org/10.1186/1743-422X-8-44
doi: 10.1186/1743-422X-8-44
Petrova VN, Russell CA (2018) The evolution of seasonal influenza viruses. Nat Rev Microbiol 16:47–60. https://doi.org/10.1038/nrmicro.2017.118
doi: 10.1038/nrmicro.2017.118 pubmed: 29081496
Peterson JM, O’Leary CA, Moss WN (2022) In silico analysis of local RNA secondary structure in influenza virus A, B and C finds evidence of widespread ordered stability but little evidence of significant covariation. Sci Rep 12:310. https://doi.org/10.1038/s41598-021-03767-x
doi: 10.1038/s41598-021-03767-x pubmed: 35013354 pmcid: 8748542
Rivas E, Clements J, Eddy SR (2017) A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs. Nat Methods 14:45–48. https://doi.org/10.1038/nmeth.4066
doi: 10.1038/nmeth.4066 pubmed: 27819659
Kobayashi Y, Dadonaite B, van Doremalen N et al (2016) Computational and molecular analysis of conserved influenza A virus RNA secondary structures involved in infectious virion production. RNA Biol 13:883–894. https://doi.org/10.1080/15476286.2016.1208331
doi: 10.1080/15476286.2016.1208331 pubmed: 27399914 pmcid: 5013999
Moss WN, Priore SF, Turner DH (2011) Identification of potential conserved RNA secondary structure throughout influenza A coding regions. RNA 17:991–1011. https://doi.org/10.1261/rna.2619511
doi: 10.1261/rna.2619511 pubmed: 21536710 pmcid: 3096049
Marsh GA, Rabadan R, Levine AJ, Palese P (2008) Highly conserved regions of influenza A virus polymerase gene segments are critical for efficient viral RNA packaging. J Virol 82:2295–2304. https://doi.org/10.1128/jvi.02267-07
doi: 10.1128/jvi.02267-07 pubmed: 18094182
Hagey RJ, Elazar M, Pham EA et al (2022) Programmable antivirals targeting critical conserved viral RNA secondary structures from influenza A virus and SARS-CoV-2. Nat Med 28:1944–1955. https://doi.org/10.1038/s41591-022-01908-x
doi: 10.1038/s41591-022-01908-x pubmed: 35982307 pmcid: 10132811
Gog JR, Dos Santos AE, Dalton RM et al (2007) Codon conservation in the influenza A virus genome defines RNA packaging signals. Nucleic Acids Res 35:1897–1907. https://doi.org/10.1093/nar/gkm087
doi: 10.1093/nar/gkm087 pubmed: 17332012 pmcid: 1874621
Liang Y, Huang T, Ly H et al (2008) Mutational analyses of packaging signals in influenza virus PA, PB1, and PB2 genomic RNA segments. J Virol 82:229–236. https://doi.org/10.1128/jvi.01541-07
doi: 10.1128/jvi.01541-07 pubmed: 17959657
Jakob C, Paul-Stansilaus R, Schwemmle M et al (2022) The influenza A virus genome packaging network — complex, flexible and yet unsolved. Nucleic Acids Res 50:9023–9038. https://doi.org/10.1093/nar/gkac688
doi: 10.1093/nar/gkac688 pubmed: 35993811 pmcid: 9458418
Piasecka J, Jarmolowicz A, Kierzek E (2020) Organization of the influenza A virus genomic RNA in the viral replication cycle—structure, interactions, and implications for the emergence of new strains. Pathogens 9:951. https://doi.org/10.3390/pathogens9110951
doi: 10.3390/pathogens9110951 pubmed: 33203084 pmcid: 7696059
Lakdawala SS, Wu Y, Wawrzusin P et al (2014) Influenza A Virus Assembly Intermediates Fuse in the Cytoplasm. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1003971
doi: 10.1371/journal.ppat.1003971 pubmed: 24603687 pmcid: 3946384

Auteurs

Barbara Mirska (B)

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.

Tomasz Woźniak (T)

Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.

Dagny Lorent (D)

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.

Agnieszka Ruszkowska (A)

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.

Jake M Peterson (JM)

Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.

Walter N Moss (WN)

Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.

David H Mathews (DH)

Department of Biochemistry & Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 712, Rochester, NY, 14642, USA.

Ryszard Kierzek (R)

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.

Elzbieta Kierzek (E)

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland. elzbieta.kierzek@ibch.poznan.pl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH