Filming enhanced ionization in an ultrafast triatomic slingshot.


Journal

Communications chemistry
ISSN: 2399-3669
Titre abrégé: Commun Chem
Pays: England
ID NLM: 101725670

Informations de publication

Date de publication:
27 Apr 2023
Historique:
received: 19 12 2022
accepted: 13 04 2023
medline: 28 4 2023
pubmed: 28 4 2023
entrez: 27 4 2023
Statut: epublish

Résumé

Filming atomic motion within molecules is an active pursuit of molecular physics and quantum chemistry. A promising method is laser-induced Coulomb Explosion Imaging (CEI) where a laser pulse rapidly ionizes many electrons from a molecule, causing the remaining ions to undergo Coulomb repulsion. The ion momenta are used to reconstruct the molecular geometry which is tracked over time (i.e., filmed) by ionizing at an adjustable delay with respect to the start of interatomic motion. Results are distorted, however, by ultrafast motion during the ionizing pulse. We studied this effect in water and filmed the rapid "slingshot" motion that enhances ionization and distorts CEI results. Our investigation uncovered both the geometry and mechanism of the enhancement which may inform CEI experiments in many other polyatomic molecules.

Identifiants

pubmed: 37106058
doi: 10.1038/s42004-023-00882-w
pii: 10.1038/s42004-023-00882-w
pmc: PMC10140156
doi:

Types de publication

Journal Article

Langues

eng

Pagination

81

Subventions

Organisme : National Science Foundation (NSF)
ID : 1806145
Organisme : National Science Foundation (NSF)
ID : 1806145
Organisme : National Science Foundation (NSF)
ID : 1806145
Organisme : National Science Foundation (NSF)
ID : 1806145
Organisme : National Science Foundation (NSF)
ID : 1806145
Organisme : U.S. Department of Energy (DOE)
ID : DE-FG02-08ER15984
Organisme : U.S. Department of Energy (DOE)
ID : DE-FG02-08ER15984

Informations de copyright

© 2023. The Author(s).

Références

Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625 (2005).
pubmed: 15800619 doi: 10.1038/nature03429
Schwalb, N. K. & Temps, F. Base Sequence and Higher-Order Structure Induce the Complex Excited-State Dynamics in DNA. Science 322, 243 (2008).
pubmed: 18845751 doi: 10.1126/science.1161651
Prokhorenko, V. I. et al. Coherent Control of Retinal Isomerization in Bacteriorhodopsin. Science 313, 1257 (2006).
pubmed: 16946063 doi: 10.1126/science.1130747
Dwyer, J. R. et al. Femtosecond electron diffraction: ‘making the molecular movie’. Philos. Trans. R. Soc. A. 364, 741 (2006).
doi: 10.1098/rsta.2005.1735
Barty, A., Küpper, J. & Chapman, H. N. Molecular Imaging Using X-Ray Free-Electron Lasers. Annu. Rev. Phys. Chem. 64, 415 (2013).
pubmed: 23331310 doi: 10.1146/annurev-physchem-032511-143708
Ivanov, M. Concluding remarks: The age of molecular movies. Faraday Discuss. 228, 622 (2021).
pubmed: 33960352 doi: 10.1039/D1FD90033A
Yang, J. et al. Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science 361, 64 (2018).
pubmed: 29976821 doi: 10.1126/science.aat0049
Wolf, T. J. 3 et al. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nat. Chem. 11, 504 (2019).
pubmed: 30988415 doi: 10.1038/s41557-019-0252-7
Yang, J. et al. Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction. Science 368, 885 (2020).
pubmed: 32439793 doi: 10.1126/science.abb2235
Meckel, M. et al. Laser-Induced Electron Tunneling and Diffraction. Science 320, 1478 (2008).
pubmed: 18556555 doi: 10.1126/science.1157980
Wolter, B. et al. Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene. Science 354, 308 (2016).
pubmed: 27846561 doi: 10.1126/science.aah3429
Minitti, M. et al. Imaging Molecular Motion: Femtosecond X-Ray Scattering of an Electrocyclic Chemical Reaction. Phys. Rev. Lett. 114, 255501 (2015).
pubmed: 26197134 doi: 10.1103/PhysRevLett.114.255501
Kim, K. H. et al. Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature 518, 385 (2015).
pubmed: 25693570 doi: 10.1038/nature14163
Glownia, J. et al. Self-Referenced Coherent Diffraction X-Ray Movie of Ångstrom- and Femtosecond-Scale Atomic Motion. Phys. Rev. Lett. 117, 153003 (2016).
pubmed: 27768351 doi: 10.1103/PhysRevLett.117.153003
Li, W. et al. Time-Resolved Dynamics in N2O4 Probed Using High Harmonic Generation. Science 322, 1207 (2008).
pubmed: 18974317 doi: 10.1126/science.1163077
Wörner, H. J. et al. Conical Intersection Dynamics in NO2 Probed by Homodyne High-Harmonic Spectroscopy. Science 334, 208 (2011).
pubmed: 21998383 doi: 10.1126/science.1208664
He, L. et al. Monitoring ultrafast vibrational dynamics of isotopic molecules with frequency modulation of high-order harmonics. Nat. Commun. 9, 1108 (2018).
pubmed: 29549255 pmcid: 5856770 doi: 10.1038/s41467-018-03568-3
Pitzer, M. et al. Direct Determination of Absolute Molecular Stereochemistry in Gas Phase by Coulomb Explosion Imaging. Science 341, 1096 (2013).
pubmed: 24009390 doi: 10.1126/science.1240362
Kunitski, M. et al. Observation of the Efimov state of the helium trimer. Science 348, 551 (2015).
pubmed: 25931554 doi: 10.1126/science.aaa5601
Fehre, K. et al. Enantioselective fragmentation of an achiral molecule in a strong laser field. Sci. Adv. 5, 7923 (2019).
doi: 10.1126/sciadv.aau7923
Endo, T. et al. Capturing roaming molecular fragments in real time. Science 370, 1072 (2020).
pubmed: 33243885 doi: 10.1126/science.abc2960
Erk, B. et al. Imaging charge transfer in iodomethane upon x-ray photoabsorption. Science 345, 288 (2014).
pubmed: 25035485 doi: 10.1126/science.1253607
Liekhus-Schmaltz, C. E. et al. Ultrafast isomerization initiated by X-ray core ionization. Nat. Commun. 6, 8199 (2015).
pubmed: 26354002 doi: 10.1038/ncomms9199
Zeller, S. et al. Imaging the He
pubmed: 27930299 pmcid: 5187706 doi: 10.1073/pnas.1610688113
Rudenko, A. et al. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays. Nature 546, 129 (2017).
pubmed: 28569799 doi: 10.1038/nature22373
Boll, R. et al. X-ray multiphoton-induced Coulomb explosion images complex single molecules. Nat. Phys. 18, 423 (2022).
doi: 10.1038/s41567-022-01507-0
Herwig, P. et al. Imaging the Absolute Configuration of a Chiral Epoxide in the Gas Phase. Science 342, 1084 (2013).
pubmed: 24288330 doi: 10.1126/science.1246549
Jahnke, T. et al. Inner-Shell-Ionization-Induced Femtosecond Structural Dynamics of Water Molecules Imaged at an X-Ray Free-Electron Laser. Phys. Rev. X 11, 041044 (2021).
Reedy, D. et al. Dissociation dynamics of the water dication following one-photon double ionization. II. Experiment. Phys. Rev. A 98, 053430 (2018).
doi: 10.1103/PhysRevA.98.053430
Severt, T. et al. Step-by-step state-selective tracking of fragmentation dynamics of water dications by momentum imaging. Nat. Commun. 13, 5146 (2022).
pubmed: 36050308 pmcid: 9437093 doi: 10.1038/s41467-022-32836-6
Hishikawa, A. et al. Visualizing Recurrently Migrating Hydrogen in Acetylene Dication by Intense Ultrashort Laser Pulses. Phys. Rev. Lett. 99, 258302 (2007).
pubmed: 18233560 doi: 10.1103/PhysRevLett.99.258302
Ibrahim, H. et al. Tabletop imaging of structural evolutions in chemical reactions demonstrated for the acetylene cation. Nat. Comm. 5, 4422 (2014).
doi: 10.1038/ncomms5422
Burger, C. et al. Visualization of bond rearrangements in acetylene using near single-cycle laser pulses. Faraday Discuss. 194, 495 (2016).
pubmed: 27711784 doi: 10.1039/C6FD00082G
Matsuda, A., Fushitani, M., Takahashi, E. J., Hishikawa, A. Visualizing Correlated Dynamics of Hydrogen Atoms in Acetylene Dication by Time-Resolved Four-Body Coulomb Explosion Imaging, Multiphoton Processes and Attosecond Physics, Vol. 125 (eds Yamanouchi, K., Katsumi, M.) 317–322 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012).
Vager, Z., Naaman, R. & Kanter, E. P. Coulomb Explosion Imaging of Small Molecules. Science 244, 426 (1989).
pubmed: 17807608 doi: 10.1126/science.244.4903.426
Stapelfeldt, H., Constant, E. & Corkum, P. B. Wave Packet Structure and Dynamics Measured by Coulomb Explosion. Phys. Rev. Lett. 74, 3780 (1995).
pubmed: 10058295 doi: 10.1103/PhysRevLett.74.3780
Fukuzawa, H. et al. Real-time observation of X-ray-induced intramolecular and interatomic electronic decay in CH
pubmed: 31097703 pmcid: 6522627 doi: 10.1038/s41467-019-10060-z
Rudenko, A. et al. Real-time observation of vibrational revival in the fastest molecular system. Chem. Phys. 329, 193 (2006).
doi: 10.1016/j.chemphys.2006.06.038
Bocharova, I. A. et al. Time-resolved Coulomb-explosion imaging of nuclear wave-packet dynamics induced in diatomic molecules by intense few-cycle laser pulses. Phys. Rev. A 83, 013417 (2011).
doi: 10.1103/PhysRevA.83.013417
Légaré, F. et al. Laser Coulomb-explosion imaging of small molecules. Phys. Rev. A 71, 013415 (2005).
doi: 10.1103/PhysRevA.71.013415
Légaré, F., Lee, K. F., Bandrauk, A. D., Villeneuve, D. M. & Corkum, P. B. Laser Coulomb explosion imaging for probing ultra-fast molecular dynamics. J. Phys. B 39, S503 (2006).
doi: 10.1088/0953-4075/39/13/S23
Posthumus, J. H. et al. Dissociative ionization of molecules in intense laser fields: a method of predicting ion kinetic energies and appearance intensities. J. Phys. B 28, L349 (1995).
doi: 10.1088/0953-4075/28/10/004
Seideman, T., Ivanov, M. Y. & Corkum, P. B. Role of Electron Localization in Intense-Field Molecular Ionization. Phys. Rev. Lett. 75, 2819 (1995).
pubmed: 10059413 doi: 10.1103/PhysRevLett.75.2819
Zuo, T. & Bandrauk, A. D. Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers. Phys. Rev. A 52, R2511 (1995).
pubmed: 9912637 doi: 10.1103/PhysRevA.52.R2511
Bocharova, I. et al. Charge Resonance Enhanced Ionization of CO
pubmed: 21902320 doi: 10.1103/PhysRevLett.107.063201
Liu, H. et al. Charge Resonance Enhanced Multiple Ionization of H2O Molecules in Intense Laser Fields. Chin. Phys. Lett. 32, 063301 (2015).
doi: 10.1088/0256-307X/32/6/063301
Wu, J. et al. Probing the tunnelling site of electrons in strong field enhanced ionization of molecules. Nat. Commun. 3, 1113 (2012).
pubmed: 23047671 doi: 10.1038/ncomms2130
Ibrahim, H., Lefebvre, C., Bandrauk, A. D., Staudte, A. & Légaré, F. H
doi: 10.1088/1361-6455/aaa192
Bucksbaum, P. H., Zavriyev, A., Muller, H. G. & Schumacher, D. W. Softening of the H[Formula: see text] molecular bond in intense laser fields. Phys. Rev. Lett. 64, 1883 (1990).
pubmed: 10041519 doi: 10.1103/PhysRevLett.64.1883
Frasinski, L. J. et al. Femtosecond dynamics of multielectron dissociative ionization by use of a picosecond laser. Phys. Rev. Lett. 58, 2424 (1987).
pubmed: 10034745 doi: 10.1103/PhysRevLett.58.2424
Frasinski, L. J. et al. Multiphoton multiple ionisation of N
doi: 10.1016/0375-9601(91)90145-X
Zhao, S. et al. Strong-field-induced bond rearrangement in triatomic molecules. Phys. Rev. A 99, 053412 (2019).
doi: 10.1103/PhysRevA.99.053412
Brichta, J. P. et al. Ultrafast imaging of multielectronic dissociative ionization of CO2 in an intense laser field. J. Phys. B 40, 117 (2007).
doi: 10.1088/0953-4075/40/1/011
McCracken, G. A., Kaldun, A., Liekhus-Schmaltz, C. & Bucksbaum, P. H. Geometric dependence of strong field enhanced ionization in D
pubmed: 28964030 doi: 10.1063/1.4997253
McCracken, G. A. & Bucksbaum, P. H. Ionization induced dynamic alignment of water. J. Chem. Phys. 152, 134308 (2020).
pubmed: 32268745 doi: 10.1063/5.0002877
Cheng, C. et al. Momentum-resolved above-threshold ionization of deuterated water. Phys. Rev. A 102, 052813 (2020).
doi: 10.1103/PhysRevA.102.052813
Howard, A. J. et al. Strong-field ionization of water: Nuclear dynamics revealed by varying the pulse duration. Phys. Rev. A 103, 043120 (2021).
doi: 10.1103/PhysRevA.103.043120
Cheng, C. et al. Strong-field ionization of water. II. Electronic and nuclear dynamics en route to double ionization. Phys. Rev. A 104, 023108 (2021).
doi: 10.1103/PhysRevA.104.023108
Allum, F. et al. Multi-Particle Three-Dimensional Covariance Imaging: “Coincidence” Insights into the Many-Body Fragmentation of Strong-Field Ionized D2O. J. Phys. Chem. Lett. 12, 8302 (2021).
pubmed: 34428066 doi: 10.1021/acs.jpclett.1c02481
Trump, C., Rottke, H. & Sandner, W. Multiphoton ionization of dissociating D[Formula: see text] molecules. Phys. Rev. A 59, 2858 (1999).
doi: 10.1103/PhysRevA.59.2858
Trump, C., Rottke, H. & Sandner, W. Strong-field photoionization of vibrational ground-state H[Formula: see text] and D[Formula: see text] molecules. Phys. Rev. A 60, 3924 (1999).
doi: 10.1103/PhysRevA.60.3924
Ergler, T. et al. Time-Resolved Imaging and Manipulation of H
pubmed: 16197211 doi: 10.1103/PhysRevLett.95.093001
Ben-Itzhak, I. et al. Elusive enhanced ionization structure for H[Formula: see text] in intense ultrashort laser pulses. Phys. Rev. A 78, 063419 (2008).
doi: 10.1103/PhysRevA.78.063419
Xu, H., He, F., Kielpinski, D., Sang, R. & Litvinyuk, I. Experimental observation of the elusive double-peak structure in R-dependent strong-field ionization rate of H[Formula: see text]. Sci. Rep. 5, 13527 (2015).
pubmed: 26314372 pmcid: 4551962 doi: 10.1038/srep13527
Légaré, F. et al. Time-Resolved Double Ionization with Few Cycle Laser Pulses. Phys. Rev. Lett. 91, 093002 (2003).
pubmed: 14525179 doi: 10.1103/PhysRevLett.91.093002
Matsuda, A., Takahashi, E. J. & Hishikawa, A. Time-resolved laser Coulomb explosion imaging using few-cycle intense laser pulses: Application to exploding CS
doi: 10.1016/j.elspec.2013.12.011
Koh, S., Yamazaki, K., Kanno, M., Kono, H. & Yamanouchi, K. Ionization and dissociation dynamics of H
doi: 10.1016/j.cplett.2020.137165
Jagutzki, O. et al. Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans. Nucl. Sci. 49, 2477 (2002).
doi: 10.1109/TNS.2002.803889
Gervais, B. et al. The H
pubmed: 19603986 doi: 10.1063/1.3157164
Streeter, Z. L. et al. Dissociation dynamics of the water dication following one-photon double ionization. I. Theory. Phys. Rev. A 98, 053429 (2018).
doi: 10.1103/PhysRevA.98.053429
Walsh, A. D., The electronic orbitals, shapes, and spectra of polyatomic molecules. Part I. AH2 molecules, J. Chem. Soc. (Resumed) 466, 2260 (1953).
Mulliken, R. S. Intensities of Electronic Transitions in Molecular Spectra II. Charge-Transfer Spectra. J. Chem. Phys. 7, 20 (1939).
doi: 10.1063/1.1750319
Jackels, C. F. An ab initio potential-energy surface study of several states of the water cation. J. Chem. Phys. 72, 4873 (1980).
doi: 10.1063/1.439771
Miranda, M., Fordell, T., Arnold, C., L’Huillier, A. & Crespo, H. Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges. Opt. Express 20, 688 (2012).
pubmed: 22274393 doi: 10.1364/OE.20.000688
Diels, J.-C., Rudolph, W., Ultrashort laser pulse phenomena, Optics and photonics 2nd edn, (Elsevier/Academic Press, Amsterdam, Boston, 2006).
Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007 (1989).
doi: 10.1063/1.456153
Werner, H.-J., Knowles, P. J., Knizia, G., Manby, F. R., Schütz, M.WIREs Comput. Mol. Sci. 2, 242 https://doi.org/10.1002/wcms.82 (2012).
Werner, H.-J. et al. Molpro, version 2015.1, a package of ab initio programs (2015). http://www.molpro.net .
Barca, G. M. 3 et al. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 152, 154102 (2020).
pubmed: 32321259 doi: 10.1063/5.0005188
Smith, D. G. 3 et al. PSI4 1.4: Open-source software for high-throughput quantum chemistry. J. Chem. Phys. 152, 184108 (2020).
pubmed: 32414239 pmcid: 7228781 doi: 10.1063/5.0006002

Auteurs

Andrew J Howard (AJ)

Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA. ahow@stanford.edu.
Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA. ahow@stanford.edu.

Mathew Britton (M)

Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
Department of Physics, Stanford University, Stanford, CA, 94305, USA.

Zachary L Streeter (ZL)

Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

Chuan Cheng (C)

Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA.

Ruaridh Forbes (R)

Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.

Joshua L Reynolds (JL)

Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.

Felix Allum (F)

Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.

Gregory A McCracken (GA)

Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.

Ian Gabalski (I)

Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.

Robert R Lucchese (RR)

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

C William McCurdy (CW)

Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

Thomas Weinacht (T)

Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA.

Philip H Bucksbaum (PH)

Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA. phbuck@stanford.edu.
Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA. phbuck@stanford.edu.
Department of Physics, Stanford University, Stanford, CA, 94305, USA. phbuck@stanford.edu.
Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA. phbuck@stanford.edu.

Classifications MeSH