Nodeless electron pairing in CsV


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
May 2023
Historique:
received: 19 07 2022
accepted: 01 03 2023
medline: 19 5 2023
pubmed: 27 4 2023
entrez: 26 4 2023
Statut: ppublish

Résumé

The newly discovered kagome superconductors represent a promising platform for investigating the interplay between band topology, electronic order and lattice geometry

Identifiants

pubmed: 37100906
doi: 10.1038/s41586-023-05907-x
pii: 10.1038/s41586-023-05907-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

488-492

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Syôzi, I. Statistics of kagomé lattice. Prog. Theor. Phys. 6, 306–308 (1951).
doi: 10.1143/ptp/6.3.306
Yu, S.-L. & Li, J.-X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B 85, 144402 (2012).
doi: 10.1103/PhysRevB.85.144402
Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).
pubmed: 25166827 doi: 10.1103/PhysRevLett.110.126405
Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B 87, 115135 (2013).
doi: 10.1103/PhysRevB.87.115135
Ortiz, B. R. et al. New kagome prototype materials: discovery of KV
doi: 10.1103/PhysRevMaterials.3.094407
Ortiz, B. R. et al. CsV
pubmed: 33412053 doi: 10.1103/PhysRevLett.125.247002
Yin, J.-X., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).
pubmed: 36543954 doi: 10.1038/s41586-022-05516-0
Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV
pubmed: 34112979 doi: 10.1038/s41563-021-01034-y
Mielke, C. et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022).
pubmed: 35140387 doi: 10.1038/s41586-021-04327-z
Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).
pubmed: 34587621 doi: 10.1038/s41586-021-03983-5
Xu, H.-S. et al. Multiband superconductivity with sign-preserving order parameter in kagome superconductor CsV
pubmed: 34767411 doi: 10.1103/PhysRevLett.127.187004
Zhao, C. et al. Nodal superconductivity and superconducting domes in the topological Kagome metal CsV
Mu, C. et al. S-wave superconductivity in kagome metal CsV
doi: 10.1088/0256-307X/38/7/077402
Duan, W. et al. Nodeless superconductivity in the kagome metal CsV
doi: 10.1007/s11433-021-1747-7
Gupta, R. et al. Microscopic evidence for anisotropic multigap superconductivity in the CsV
doi: 10.1038/s41535-022-00453-7
Guguchia, Z. et al. Tunable nodal kagome superconductivity in charge ordered RbV
doi: 10.1038/s41467-022-35718-z
Lou, R. et al. Charge-density-wave-induced peak-dip-hump structure and the multiband superconductivity in a kagome superconductor CsV
pubmed: 35119899 doi: 10.1103/PhysRevLett.128.036402
Wu, X. et al. Nature of unconventional pairing in the kagome superconductors AV
pubmed: 34739258 doi: 10.1103/PhysRevLett.127.177001
Tazai, R., Yamakawa, Y., Onari, S. & Kontani, H. Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV
pubmed: 35363527 doi: 10.1126/sciadv.abl4108
Gu, Y., Zhang, Y., Feng, X., Jiang, K. & Hu, J. Gapless excitations inside the fully gapped kagome superconductors AV
doi: 10.1103/PhysRevB.105.L100502
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
pubmed: 25673411 doi: 10.1038/nature14165
Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 35–44 (2022).
pubmed: 34987212 doi: 10.1038/s41586-021-04073-2
He, R.-H. et al. Energy gaps in the failed high-T
doi: 10.1038/nphys1159
Neupert, T., Denner, M. M., Yin, J.-X., Thomale, R. & Hasan, M. Z. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2021).
doi: 10.1038/s41567-021-01404-y
Khasanov, R. et al. Time-reversal symmetry broken by charge order in CsV
doi: 10.1103/PhysRevResearch.4.023244
Xu, Y. et al. Three-state nematicity and magneto-optical Kerr effect in the charge density waves in kagome superconductors. Nat. Phys. 18, 1470–1475 (2022).
doi: 10.1038/s41567-022-01805-7
Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV
pubmed: 34795303 pmcid: 8602318 doi: 10.1038/s41467-021-27084-z
Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV
doi: 10.1038/s41567-021-01479-7
Chen, K. et al. Double superconducting dome and triple enhancement of T
pubmed: 34213920 doi: 10.1103/PhysRevLett.126.247001
Yu, F. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat. Commun. 12, 3645 (2021).
pubmed: 34112779 pmcid: 8192749 doi: 10.1038/s41467-021-23928-w
Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV
pubmed: 32789181 pmcid: 7399694 doi: 10.1126/sciadv.abb6003
Yu, F. et al. Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal. Phys. Rev. B 104, L041103 (2021).
doi: 10.1103/PhysRevB.104.L041103
Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).
doi: 10.1103/RevModPhys.93.025006
Kang, M. et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV
doi: 10.1038/s41567-021-01451-5
Hu, Y. et al. Rich nature of Van Hove singularities in Kagome superconductor CsV
pubmed: 35468883 pmcid: 9038924 doi: 10.1038/s41467-022-29828-x
Li, Y. et al. Tuning the competition between superconductivity and charge order in the kagome superconductor Cs(V
doi: 10.1103/PhysRevB.105.L180507
Luo, H. et al. Electronic nature of charge density wave and electron-phonon coupling in kagome superconductor KV
pubmed: 35022418 pmcid: 8755796 doi: 10.1038/s41467-021-27946-6
Zhong, Y. et al. Testing electron-phonon coupling for the superconductivity in kagome metal CsV
Gupta, R. et al. Two types of charge order with distinct interplay with superconductivity in the kagome material CsV
doi: 10.1038/s42005-022-01011-0
Shimojima, T., Okazaki, K. & Shin, S. Low-temperature and high-energy-resolution laser photoemission spectroscopy. J. Phys. Soc. Jpn 84, 072001 (2015).
doi: 10.7566/JPSJ.84.072001
Reber, T., Plumb, N., Waugh, J. & Dessau, D. Effects, determination, and correction of count rate nonlinearity in multi-channel analog electron detectors. Rev. Sci. Instrum. 85, 043907 (2014).
pubmed: 24784626 doi: 10.1063/1.4870283
Matsui, H. et al. BCS-like Bogoliubov quasiparticles in high-T
pubmed: 12786581 doi: 10.1103/PhysRevLett.90.217002
Shimojima, T. et al. Orbital-independent superconducting gaps in iron pnictides. Science 332, 564–567 (2011).
pubmed: 21474714 doi: 10.1126/science.1202150
Okazaki, K. et al. Octet-line node structure of superconducting order parameter in KFe
pubmed: 22984065 doi: 10.1126/science.1222793
Li, C. et al. Coexistence of two intertwined charge density waves in a kagome system. Phys. Rev. Res. 4, 033072 (2021).
doi: 10.1103/PhysRevResearch.4.033072
Valla, T., Fedorov, A. V., Johnson, P. D. & Hulbert, S. L. Many-body effects in angle-resolved photoemission: quasiparticle energy and lifetime of a Mo(110) surface state. Phys. Rev. Lett. 83, 2085–2088 (1999).
doi: 10.1103/PhysRevLett.83.2085
Lanzara, A. et al. Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001).
pubmed: 11484045 doi: 10.1038/35087518
Johnson, P. et al. Doping and temperature dependence of the mass enhancement observed in the cuprate Bi
pubmed: 11690300 doi: 10.1103/PhysRevLett.87.177007

Auteurs

Yigui Zhong (Y)

Institute for Solid States Physics, The University of Tokyo, Kashiwa, Japan.

Jinjin Liu (J)

Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China.
Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, China.

Xianxin Wu (X)

CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China.

Zurab Guguchia (Z)

Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, Villigen PSI, Switzerland.

J-X Yin (JX)

Laboratory for Quantum Emergence, Department of Physics, Southern University of Science and Technology, Shenzhen, China.
Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen, China.

Akifumi Mine (A)

Institute for Solid States Physics, The University of Tokyo, Kashiwa, Japan.

Yongkai Li (Y)

Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China.
Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, China.
Material Science Center, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, China.

Sahand Najafzadeh (S)

Institute for Solid States Physics, The University of Tokyo, Kashiwa, Japan.

Debarchan Das (D)

Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, Villigen PSI, Switzerland.

Charles Mielke (C)

Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, Villigen PSI, Switzerland.

Rustem Khasanov (R)

Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, Villigen PSI, Switzerland.

Hubertus Luetkens (H)

Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, Villigen PSI, Switzerland.

Takeshi Suzuki (T)

Institute for Solid States Physics, The University of Tokyo, Kashiwa, Japan.

Kecheng Liu (K)

Institute for Solid States Physics, The University of Tokyo, Kashiwa, Japan.

Xinloong Han (X)

Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, China.

Takeshi Kondo (T)

Institute for Solid States Physics, The University of Tokyo, Kashiwa, Japan.
Trans-scale Quantum Science Institute, The University of Tokyo, Tokyo, Japan.

Jiangping Hu (J)

Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.

Shik Shin (S)

Institute for Solid States Physics, The University of Tokyo, Kashiwa, Japan.
Office of University Professor, The University of Tokyo, Kashiwa, Japan.

Zhiwei Wang (Z)

Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China. zhiweiwang@bit.edu.cn.
Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, China. zhiweiwang@bit.edu.cn.
Material Science Center, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, China. zhiweiwang@bit.edu.cn.

Xun Shi (X)

Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China. shixun@bit.edu.cn.
Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, China. shixun@bit.edu.cn.

Yugui Yao (Y)

Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China.
Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, China.
Material Science Center, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, China.

Kozo Okazaki (K)

Institute for Solid States Physics, The University of Tokyo, Kashiwa, Japan. okazaki@issp.u-tokyo.ac.jp.
Trans-scale Quantum Science Institute, The University of Tokyo, Tokyo, Japan. okazaki@issp.u-tokyo.ac.jp.
Material Innovation Research Center, The University of Tokyo, Kashiwa, Japan. okazaki@issp.u-tokyo.ac.jp.

Classifications MeSH