Synthesis of single-walled carbon nanotubes functionalized with platinum nanoparticles to sense breast cancer cells in 4T1 model to X-ray radiation.
Bovine serum albumin
Folic acid
MTT assay
Platinum
Radiosensitizers
Single-walled carbon nanotubes
Journal
Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782
Informations de publication
Date de publication:
18 04 2023
18 04 2023
Historique:
received:
19
10
2022
accepted:
21
03
2023
medline:
19
4
2023
entrez:
17
4
2023
pubmed:
18
4
2023
Statut:
epublish
Résumé
In recent years, various types of radiosensitizers have been developed to address the challenges of cancer radiotherapy. Here, platinum-functionalized oxygenated single-walled carbon nanotubes (O-SWCNTs-Pt) coated with folic acid (FA) and bovine serum albumin (BSA) (O-SWCNTs-Pt-BSA-FA) were synthesized, characterized, and used as radiosensitizers to improve the therapeutic efficacy of X-rays in a mouse model of breast cancer (4T1) in vitro. The nanosensitizer was characterized by different techniques, such as transmission electron microscopy (TEM), selected area electron diffraction (SAED), dynamic light scattering (DLS), zeta potential, X-ray diffraction (XRD), ultraviolet-visible (UV-visible), and Fourier transform infrared (FTIR) spectrometry. The evaluation of cell viability with nanocarriers O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, Pt-BSA-FA, and O-SWCNTs-Pt-BSA-FA is reported at the concentrations of 10, 30, and 90 μg/mL by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in the presence and absence of X-rays at 4 and 8 Gy. The results showed that administration of O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, Pt-BSA-FA, and O-SWCNTs-Pt-BSA-FA + 8 Gy at a concentration of 90 μg/mL reduced survival by 75.31, 65.32, 67.35, and 60.35%, respectively. O-SWCNTs-Pt-BSA-FA has a hydrodynamic size of 88.57 nm and a surface charge of -29 mV, which indicates special stability. Compared with O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, and Pt-BSA-FA, it has very strong cell-killing activity in the 4T1 cell line. It is also noteworthy that SWCNTs can act as a controlled release and delivery system for PtNPs due to their unique properties and easy penetration into biological membranes. As a result, the new nanosensitizer may play a role in cancer treatment in conjunction with radiotherapy technology. Graphical abstract.
Identifiants
pubmed: 37069457
doi: 10.1007/s00604-023-05761-8
pii: 10.1007/s00604-023-05761-8
doi:
Substances chimiques
Nanotubes, Carbon
0
Platinum
49DFR088MY
Serum Albumin, Bovine
27432CM55Q
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
184Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
Fan W, Shen B, Bu W, Chen F, Zhao K, Zhang S et al (2013) Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging. J Am Chem Soc 135(17):6494–6503. https://doi.org/10.1021/ja312225b
doi: 10.1021/ja312225b
pubmed: 23574400
Liu Q, Kim YJ, Im GB, Zhu J, Wu Y, Liu Y et al (2021) Inorganic nanoparticles applied as functional therapeutics. Adv Funct Mater 31(12):2008171. https://doi.org/10.1002/adfm.202008171
doi: 10.1002/adfm.202008171
Yu S, Cui Y, Guo X, Chen S, Sun H, Wang L et al (2019) Biocompatible bovine serum albumin stabilized platinum nanoparticles for the oxidation of morin. New J Chem 43(22):8774–8780. https://doi.org/10.1039/C9NJ00887J
doi: 10.1039/C9NJ00887J
Daneshvar F, Salehi F, Karimi M, Vais RD, Mosleh-Shirazi M, Sattarahmady N (2020) Combined X-ray radiotherapy and laser photothermal therapy of melanoma cancer cells using dual-sensitization of platinum nanoparticles. J Photochem Photobiol B: Biol 203:111737. https://doi.org/10.1016/j.jphotobiol.2019.111737
doi: 10.1016/j.jphotobiol.2019.111737
KA MA, Ab Rashid R, Lazim RM, Dollah N, Razak KA, Rahman W (2018) Evaluation of radiosensitization effects by platinum nanodendrites for 6 MV photon beam radiotherapy. Radiat Phys Chem 150:40-45. https://doi.org/10.1016/j.radphyschem.2018.04.018
Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C et al (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol Biol Med 5(2):136–142. https://doi.org/10.1016/j.nano.2009.01.014
doi: 10.1016/j.nano.2009.01.014
Tang J, Jiang X, Wang L, Zhang H, Hu Z, Liu Y et al (2014) Au@ Pt nanostructures: a novel photothermal conversion agent for cancer therapy. Nanoscale 6(7):3670–3678. https://doi.org/10.1039/C3NR06841B
doi: 10.1039/C3NR06841B
pubmed: 24566522
Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136. https://doi.org/10.1021/cr050569o
doi: 10.1021/cr050569o
pubmed: 16522018
Li H, Sun X, Li Y, Li B, Liang C, Wang H (2019) Preparation and properties of carbon nanotube (Fe)/hydroxyapatite composite as magnetic targeted drug delivery carrier. Mater Sci Eng: C 97:222–229. https://doi.org/10.1016/j.msec.2018.11.042
doi: 10.1016/j.msec.2018.11.042
Sun Y-P, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35(12):1096–1104. https://doi.org/10.1021/ar010160v
doi: 10.1021/ar010160v
pubmed: 12484798
Maleki R, Afrouzi HH, Hosseini M, Toghraie D, Rostami S (2020) Molecular dynamics simulation of doxorubicin loading with N-isopropyl acrylamide carbon nanotube in a drug delivery system. Comput Methods Prog Biomed 184:105303. https://doi.org/10.1016/j.cmpb.2019.105303
doi: 10.1016/j.cmpb.2019.105303
Al Faraj A, Shaik AS, Halwani R, Alfuraih A (2016) Magnetic targeting and delivery of drug-loaded SWCNTs theranostic nanoprobes to lung metastasis in breast cancer animal model: noninvasive monitoring using magnetic resonance imaging. Mol Imag Biol 18:315–324. https://doi.org/10.1007/s11307-015-0902-0
doi: 10.1007/s11307-015-0902-0
Gong H, Peng R, Liu Z (2013) Carbon nanotubes for biomedical imaging: the recent advances. Adv Drug Del Rev 65(15):1951–1963. https://doi.org/10.1016/j.addr.2013.10.002
doi: 10.1016/j.addr.2013.10.002
Liu L, Hu F, Wang H, Wu X, Eltahan AS, Stanford S et al (2019) Secreted protein acidic and rich in cysteine mediated biomimetic delivery of methotrexate by albumin-based nanomedicines for rheumatoid arthritis therapy. Acs Nano 13(5):5036–5048. https://doi.org/10.1021/acsnano.9b01710
doi: 10.1021/acsnano.9b01710
pubmed: 30978282
Nikitin AA, Yurenya AY, Gabbasov RR, Cherepanov VM, Polikarpov MA, Chuev MA et al (2021) Effects of macromolecular crowding on nanoparticle diffusion: new insights from Mössbauer spectroscopy. J Phys Chem Lett 12(29):6804–6811. https://doi.org/10.1021/acs.jpclett.1c01984
doi: 10.1021/acs.jpclett.1c01984
pubmed: 34270251
Monsef R, Salavati-Niasari M (2023) Architecturally robust tubular nano-clay grafted Li0. 9Ni0. 5Co0. 5O2-x/LiFeO2 nanocomposites: new implications for electrochemical hydrogen storage. Fuel 332:126015. https://doi.org/10.1016/j.fuel.2022.126015
doi: 10.1016/j.fuel.2022.126015
Li Y, Yun K-H, Lee H, Goh S-H, Suh Y-G, Choi Y (2019) Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials 197:12–19. https://doi.org/10.1016/j.biomaterials.2019.01.004
doi: 10.1016/j.biomaterials.2019.01.004
pubmed: 30623793
Klein S, Otto J, Harreiß C, Distel LV, Leistner A, Neuhuber W et al (2021) Pt–Fe3O4, Pd–Fe3O4, and Au–Fe3O4 nanoheterodimers and their efficacy as radiosensitizers in cancer therapy. ACS Appl Bio Mater 4(11):7879–7892. https://doi.org/10.1021/acsabm.1c00803
doi: 10.1021/acsabm.1c00803
pubmed: 35006769
Rashidzadeh H, Seidi F, Ghaffarlou M, Salehiabar M, Charmi J, Yaray K et al (2023) Preparation of alginate coated Pt nanoparticle for radiosensitization of breast cancer tumor. Int J Biol Macromol 14:123273. https://doi.org/10.1016/j.ijbiomac.2023.123273
doi: 10.1016/j.ijbiomac.2023.123273
Monsef R, Salavati-Niasari M (2022) Electrochemical sensor based on a chitosan-molybdenum vanadate nanocomposite for detection of hydroxychloroquine in biological samples. J Colloid Interface Sci 613:1–14. https://doi.org/10.1016/j.jcis.2022.01.039
doi: 10.1016/j.jcis.2022.01.039
pubmed: 35030412
Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G et al (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076. https://doi.org/10.1002/smll.200900466
doi: 10.1002/smll.200900466
pubmed: 19642089
Parng C (2005) In vivo zebrafish assays for toxicity testing. Curr Opin Drug Discov Devel 8(1):100–106. http://europepmc.org/abstract/MED/15679177
pubmed: 15679177
Aghaei A, Shaterian M, Hassan H, Farokhi A (2022) Single-walled carbon nanotubes: synthesis and quantitative purification evaluation by acid/base treatment for high carbon impurity elimination. Chemical Papers 77:249–258. https://doi.org/10.1007/s11696-022-02478-5
doi: 10.1007/s11696-022-02478-5
Aghaei A, Shaterian M, Monfared HH, Farokhi A (2022) Designing a strategy for fabrication of single-walled carbon nanotube via CH4/N2 gas by the chemical vapor deposition method. Adv Powder Technol 33(3):103500. https://doi.org/10.1016/j.apt.2022.103500
doi: 10.1016/j.apt.2022.103500
Hao Y, Chen S, Wang H, Chen R, Sun P, Chen T (2020) Platinum nanoparticles supported on hierarchically porous aluminosilicate nanospheres for low-temperature catalytic combustion of volatile organic compounds. ACS Appl Bio Mater 3(8):8472–8482. https://doi.org/10.1021/acsanm.0c02001
doi: 10.1021/acsanm.0c02001
Holišová V, Urban M, Konvičková Z, Kolenčík M, Mančík P, Slabotinský J et al (2021) Colloidal stability of phytosynthesised gold nanoparticles and their catalytic effects for nerve agent degradation. Sci Rep 11(1):1–9. https://doi.org/10.1038/s41598-021-83460-1
doi: 10.1038/s41598-021-83460-1
Zhang R, Huang J, Chen K, Boussouar I, Chen X, Fan Y et al (2021) Highly efficient ionic gating of solid-state nanosensors by the reversible interaction between pillar [6] arene-AuNPs and azobenzene. Anal Chem 93(6):3280–3286. https://doi.org/10.1021/acs.analchem.0c05241
doi: 10.1021/acs.analchem.0c05241
pubmed: 33528247
Abramova AM, Kokorina AA, Sindeeva OA, Jolibois F, Puech P, Sukhorukov GB et al (2020) Molecular nature of breakdown of the folic acid under hydrothermal treatment: a combined experimental and DFT study. Sci Rep 10(1):19668. https://doi.org/10.1038/s41598-020-76311-y
doi: 10.1038/s41598-020-76311-y
pubmed: 33184321
pmcid: 7661697
Winjobi O, Zhang Z, Liang C, Li W (2010) Carbon nanotube supported platinum–palladium nanoparticles for formic acid oxidation. Electrochim Acta 55(13):4217–4221. https://doi.org/10.1016/j.electacta.2010.02.062
doi: 10.1016/j.electacta.2010.02.062
Nagababu P, Ahmed SAM, Prabhu YT, Kularkar A, Bhowmick S, Rayalu SS (2021) Synthesis of Ni2P/CdS and Pt/TiO2 nanocomposite for photoreduction of CO2 into methanol. Sci Rep 11(1):8084. https://doi.org/10.1038/s41598-021-87625-w
doi: 10.1038/s41598-021-87625-w
pubmed: 33850240
pmcid: 8044129
Ghiyasiyan-Arani M, Salavati-Niasari M, Naseh S (2017) Enhanced photodegradation of dye in waste water using iron vanadate nanocomposite; ultrasound-assisted preparation and characterization. Ultrason Sonochem 39:494–503. https://doi.org/10.1016/j.ultsonch.2017.05.025
doi: 10.1016/j.ultsonch.2017.05.025
pubmed: 28732973
Georgakilas V, Tzitzios V, Gournis D, Petridis D (2005) Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem Mater 17(7):1613–1617. https://doi.org/10.1021/cm0483590
doi: 10.1021/cm0483590
Karami K, Jamshidian N, Hajiaghasi A, Amirghofran Z (2020) BSA nanoparticles as controlled release carriers for isophethalaldoxime palladacycle complex; synthesis, characterization, in vitro evaluation, cytotoxicity and release kinetics analysis. New J Chem 44(11):4394–4405. https://doi.org/10.1039/C9NJ05847H
doi: 10.1039/C9NJ05847H
Ding L, Wang R, Hu Y, Xu F, Zhang N, Cao X et al (2020) Folic acid-modified Laponite®-stabilized Fe3O4 nanoparticles for targeted T2-weighted MR imaging of tumor. Applied Clay Science 186:105447. https://doi.org/10.1016/j.clay.2020.105447
doi: 10.1016/j.clay.2020.105447
Kumar CS, Thangam R, Mary SA, Kannan PR, Arun G, Madhan B (2020) Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr Polym 231:115682. https://doi.org/10.1016/j.carbpol.2019.115682
doi: 10.1016/j.carbpol.2019.115682
Salavati-Niasari M, Shaterian M, Ganjali MR, Norouzi P (2007) Oxidation of cyclohexene with tert-butylhydroperoxide catalysted by host (nanocavity of zeolite-Y)/guest (Mn (II), Co (II), Ni (II) and Cu (II) complexes of N, N′-bis (salicylidene) phenylene-1, 3-diamine) nanocomposite materials (HGNM). J Mol Catal A: Chem 261(2):147–155. https://doi.org/10.1016/j.molcata.2006.07.048
doi: 10.1016/j.molcata.2006.07.048
Salavati-Niasari M, Davar F, Fereshteh Z (2009) Synthesis and characterization of ZnO nanocrystals from thermolysis of new precursor. Chem Eng J 146(3):498–502. https://doi.org/10.1016/j.cej.2008.09.042
doi: 10.1016/j.cej.2008.09.042
Castan A, Forel S, Fossard F, Defillet J, Ghedjatti A, Levshov D et al (2021) Assessing the reliability of the Raman peak counting method for the characterization of SWCNT diameter distributions: a cross characterization with TEM. Carbon 171:968–979. https://doi.org/10.1016/j.carbon.2020.09.012
doi: 10.1016/j.carbon.2020.09.012
Karimi-Maleh H, Alizadeh M, Orooji Y, Karimi F, Baghayeri M, Rouhi J et al (2021) Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: a docking/experimental investigation. Ind Eng Chem Res 60(2):816–823. https://doi.org/10.1021/acs.iecr.0c04698
doi: 10.1021/acs.iecr.0c04698
Ruiz-Camacho B, Medina-Ramírez A, Fuentes-Ramírez R, Navarro R, Goméz CM, Pérez-Larios A (2022) Pt and Pt–Ag nanoparticles supported on carbon nanotubes (CNT) for oxygen reduction reaction in alkaline medium. Int J Hydrogen Energy 47(70):30147–30159. https://doi.org/10.1016/j.ijhydene.2022.03.190
doi: 10.1016/j.ijhydene.2022.03.190
Azcoaga Chort MF, Nagel PA, Veizaga NS, Rodríguez VI, de Miguel SR (2022) Effect of Sn content on Pt/CNT electrocatalysts for direct ethanol fuel cell application. Can J Chem Eng 100(8):1848–1857. https://doi.org/10.1002/cjce.24252
doi: 10.1002/cjce.24252
Samanta R, Mishra R, Barman S (2022) Interface-engineered porous Pt–PdO nanostructures for highly efficient hydrogen evolution and oxidation reactions in base and acid. ACS Sustain Chem Eng 10(11):3704–3715. https://doi.org/10.1021/acssuschemeng.2c00218
doi: 10.1021/acssuschemeng.2c00218
Singh V, Kesharwani P (2021) Dendrimer as a promising nanocarrier for the delivery of doxorubicin as an anticancer therapeutics. J Biomater Sci Polym Ed 32(14):1882–1909. https://doi.org/10.1080/09205063.2021.1938859
doi: 10.1080/09205063.2021.1938859
pubmed: 34078252