A robust and efficient microvascular isolation method for multimodal characterization of the mouse brain vasculature.
blood-brain barrier
capillary
endothelial cell
microvascular isolation
neurovascular unit
pericyte
single-cell RNA sequencing
vasculature
Journal
Cell reports methods
ISSN: 2667-2375
Titre abrégé: Cell Rep Methods
Pays: United States
ID NLM: 9918227360606676
Informations de publication
Date de publication:
27 03 2023
27 03 2023
Historique:
received:
30
09
2022
revised:
16
01
2023
accepted:
27
02
2023
medline:
15
4
2023
entrez:
14
4
2023
pubmed:
15
4
2023
Statut:
epublish
Résumé
Studying disease-related changes in the brain vasculature is warranted due to its crucial role in supplying oxygen and nutrients and removing waste and due to the anticipated vascular dysfunction in brain diseases. To this end, we have developed a protocol for fast and simple isolation of brain vascular fragments without the use of transgenic reporters. We used it to isolate and analyze 22,515 cells by single-cell RNA sequencing. The cells distributed into 23 distinct clusters corresponding to all known vascular and perivascular cell types in the brain. Western blot analysis also suggested that the protocol is suitable for proteomic analysis. We further adapted it for the establishment of primary cell cultures. The protocol generated highly reproducible results. In conclusion, we have developed a simple and robust brain vascular isolation protocol suitable for different experimental modalities, such as single-cell analyses, western blotting, and primary cell culture.
Identifiants
pubmed: 37056377
doi: 10.1016/j.crmeth.2023.100431
pii: S2667-2375(23)00046-2
pmc: PMC10088242
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Pagination
100431Informations de copyright
© 2023 The Authors.
Déclaration de conflit d'intérêts
The authors declare no competing interests.
Références
Nature. 2018 Feb 22;554(7693):475-480
pubmed: 29443965
Cell. 2020 Feb 20;180(4):764-779.e20
pubmed: 32059779
Science. 2015 Mar 6;347(6226):1138-42
pubmed: 25700174
J Cereb Blood Flow Metab. 2022 Feb;42(2):264-279
pubmed: 34689641
Nat Neurosci. 2018 Oct;21(10):1359-1369
pubmed: 30258234
Development. 2008 Jan;135(1):145-57
pubmed: 18045844
Nat Biotechnol. 2018 Dec 03;:
pubmed: 30531897
EMBO Rep. 2019 Nov 5;20(11):e48070
pubmed: 31617312
Nat Rev Immunol. 2018 Apr;18(4):225-242
pubmed: 29151590
Methods Mol Biol. 2022;2492:3-24
pubmed: 35733036
Redox Biol. 2018 Jun;16:381-387
pubmed: 29627745
BMC Bioinformatics. 2017 Nov 29;18(1):529
pubmed: 29187165
Nat Rev Neurosci. 2022 Jan;23(1):23-34
pubmed: 34671105
Cell. 2018 Aug 9;174(4):1015-1030.e16
pubmed: 30096299
Front Neurosci. 2021 Aug 19;15:688090
pubmed: 34489623
Cell. 2018 Aug 9;174(4):999-1014.e22
pubmed: 30096314
Nat Commun. 2021 Apr 9;12(1):2141
pubmed: 33837218
Circ Res. 2021 Feb 19;128(4):e46-e62
pubmed: 33375813
Cell. 2021 Jun 24;184(13):3573-3587.e29
pubmed: 34062119
Front Cell Neurosci. 2014 Dec 12;8:418
pubmed: 25565956
Physiol Rev. 2019 Jan 1;99(1):21-78
pubmed: 30280653
Nat Neurosci. 2021 Sep;24(9):1198-1209
pubmed: 34354283
Nat Commun. 2022 Jun 14;13(1):3409
pubmed: 35701396
PLoS One. 2020 Nov 19;15(11):e0241040
pubmed: 33211705
Nat Neurosci. 2018 Oct;21(10):1318-1331
pubmed: 30250261
Cytometry A. 2015 Feb;87(2):166-75
pubmed: 25598345