Benzo (
baby food
benzo (a) pyrene
carcinogenic risk
non carcinogenic risk
Journal
Reviews on environmental health
ISSN: 2191-0308
Titre abrégé: Rev Environ Health
Pays: Germany
ID NLM: 0425754
Informations de publication
Date de publication:
13 Apr 2023
13 Apr 2023
Historique:
received:
29
12
2022
accepted:
29
03
2023
entrez:
13
4
2023
pubmed:
14
4
2023
medline:
14
4
2023
Statut:
aheadofprint
Résumé
Exposure of infants to chemicals during their development will have major effects on their health. One of the major exposures of infants to chemicals is through their food. The main structure of infant food is milk, which is high in fat. There is a possibility of accumulation of environmental pollution, including benzo (
Identifiants
pubmed: 37053495
pii: reveh-2022-0263
doi: 10.1515/reveh-2022-0263
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023 Walter de Gruyter GmbH, Berlin/Boston.
Références
Hu, Y, Tian, H, Hu, S, Dong, L, Zhang, J, Yu, X, et al.. The effect of in-package cold plasma on the formation of polycyclic aromatic hydrocarbons in charcoal-grilled beef steak with different oils or fats. Food Chem 2022;371:131384. https://doi.org/10.1016/j.foodchem.2021.131384 .
doi: 10.1016/j.foodchem.2021.131384
Onopiuk, A, Kołodziejczak, K, Marcinkowska-Lesiak, M, Poltorak, A. Determination of polycyclic aromatic hydrocarbons using different extraction methods and HPLC-FLD detection in smoked and grilled meat products. Food Chem 2022;373:131506. https://doi.org/10.1016/j.foodchem.2021.131506 .
doi: 10.1016/j.foodchem.2021.131506
Santonicola, S, De Felice, A, Cobellis, L, Passariello, N, Peluso, A, Murru, N, et al.. Comparative study on the occurrence of polycyclic aromatic hydrocarbons in breast milk and infant formula and risk assessment. Chemosphere 2017;175:383–90. https://doi.org/10.1016/j.chemosphere.2017.02.084 .
doi: 10.1016/j.chemosphere.2017.02.084
Ekner, H, Dreij, K, Sadiktsis, I. Determination of polycyclic aromatic hydrocarbons in commercial olive oils by HPLC/GC/MS – occurrence, composition and sources. Food Control 2022;132:108528. https://doi.org/10.1016/j.foodcont.2021.108528 .
doi: 10.1016/j.foodcont.2021.108528
Usman, AT, Abugu, HO, Okoye, COB. Environmental impact and human health risk assessment of polycyclic aromatic hydrocarbons (pahs) in raw milk from free-ranging cattles in northwest Nigeria. J Environ Health Sci Eng 2021;19:1523–34. https://doi.org/10.1007/s40201-021-00708-8 .
doi: 10.1007/s40201-021-00708-8
Zastrow, L, Speer, K, Schwind, KH, Jira, W. A sensitive GC–HRMS method for the simultaneous determination of parent and oxygenated polycyclic aromatic hydrocarbons in barbecued meat and meat substitutes. Food Chem 2021;365:130625. https://doi.org/10.1016/j.foodchem.2021.130625 .
doi: 10.1016/j.foodchem.2021.130625
Ma, JK, Li, K, Li, X, Elbadry, S, Raslan, AA, Li, Y, et al.. Levels of polycyclic aromatic hydrocarbons in edible and fried vegetable oil: a health risk assessment study. Environ Sci Pollut Res 2021;28:59784–91. https://doi.org/10.1007/s11356-021-14755-z .
doi: 10.1007/s11356-021-14755-z
Zhou, P, Wang, R, Fan, R, Yang, X, Mei, H, Chen, H, et al.. Magnetic amino-functionalized metal-organic frameworks as a novel solid support in ionic liquids-based effervescent tablets for efficient extraction of polycyclic aromatic hydrocarbons in milks. Ecotoxicol Environ Saf 2021;222:112482. https://doi.org/10.1016/j.ecoenv.2021.112482 .
doi: 10.1016/j.ecoenv.2021.112482
Onopiuk, A, Kołodziejczak, K, Szpicer, A, Wojtasik-Kalinowska, I, Wierzbicka, A, Półtorak, A. Analysis of factors that influence the PAH profile and amount in meat products subjected to thermal processing. Trends Food Sci Technol 2021;115:366–79. https://doi.org/10.1016/j.tifs.2021.06.043 .
doi: 10.1016/j.tifs.2021.06.043
Akbari-Adergani, B, Mahmood-babooi, K, Salehi, A, Khaniki, GJ, Shariatifar, N, Sadighara, P, et al.. GC–MS determination of the content of polycyclic aromatic hydrocarbons in bread and potato Tahdig prepared with the common edible oil. Environ Monit Assess 2021;193:540. https://doi.org/10.1007/s10661-021-09347-w .
doi: 10.1007/s10661-021-09347-w
Gamboa-Loira, B, López-Carrillo, L, Mar-Sánchez, Y, Stern, D, Cebrián, ME. Epidemiologic evidence of exposure to polycyclic aromatic hydrocarbons and breast cancer: a systematic review and meta-analysis. Chemosphere 2022;290:133237. https://doi.org/10.1016/j.chemosphere.2021.133237 .
doi: 10.1016/j.chemosphere.2021.133237
Torres-Moreno, C, Puente-DelaCruz, L, Codling, G, Villa, AL, Cobo, M, Klanova, J, et al.. Polycyclic aromatic hydrocarbons (PAHs) in human breast milk from Colombia: spatial occurrence, sources and probabilistic risk assessment. Environ Res 2022;204:111981. https://doi.org/10.1016/j.envres.2021.111981 .
doi: 10.1016/j.envres.2021.111981
Maier, MLV, Siddens, LK, Pennington, JM, Uesugi, SL, Anderson, KA, Tidwell, LG, et al.. Benzo[a]pyrene (BaP) metabolites predominant in human plasma following escalating oral micro-dosing with [14C]-BaP. Environ Int 2022;159:107045. https://doi.org/10.1016/j.envint.2021.107045 .
doi: 10.1016/j.envint.2021.107045
Shahsavani, S, Fararouei, M, Soveid, M, Dehghani, M, Hoseini, M. Exposure to polycyclic aromatic hydrocarbon-induced oxidative stress in Shiraz, Iran: urinary levels, health risk assessment and mediation effect of MDA on the risk of metabolic syndromes. Int Arch Occup Environ Health 2022;95:1043–58. https://doi.org/10.1007/s00420-021-01822-8 .
doi: 10.1007/s00420-021-01822-8
Lee, DG, Schuetz, JM, Lai, AS, Burstyn, I, Brooks-Wilson, A, Aronson, KJ, et al.. Interactions between exposure to polycyclic aromatic hydrocarbons and xenobiotic metabolism genes, and risk of breast cancer. Breast Cancer 2022;29:38–49. https://doi.org/10.1007/s12282-021-01279-0 .
doi: 10.1007/s12282-021-01279-0
Vogt, R, Bennett, D, Cassady, D, Frost, J, Ritz, B, Hertz-Picciotto, I. Cancer and non-cancer health effects from food contaminant exposures for children and adults in California: a risk assessment. Environ Health 2012;11:83. https://doi.org/10.1186/1476-069x-11-83 .
doi: 10.1186/1476-069x-11-83
Zhu, Y, Huang, H, Zhang, Y, Xiong, G, Zhang, Q, Li, Y, et al.. Evaluation of PAHs in edible parts of vegetables and their human health risks in Jinzhong City, Shanxi Province, China: a multimedia modeling approach. Sci Total Environ 2021;773:145076. https://doi.org/10.1016/j.scitotenv.2021.145076 .
doi: 10.1016/j.scitotenv.2021.145076
Fernández, SF, Pardo, O, Hernández, CS, Garlito, B, Yusà, V. Children’s exposure to polycyclic aromatic hydrocarbons in the valencian region (Spain): urinary levels, predictors of exposure and risk assessment. Environ Int 2021;153:106535. https://doi.org/10.1016/j.envint.2021.106535 .
doi: 10.1016/j.envint.2021.106535
Iwegbue, CMA, Edeme, JN, Tesi, GO, Bassey, FI, Martincigh, BS, Nwajei, GE. Polycyclic aromatic hydrocarbon concentrations in commercially available infant formulae in Nigeria: estimation of dietary intakes and risk assessment. Food Chem Toxicol 2014;72:221–7. https://doi.org/10.1016/j.fct.2014.06.026 .
doi: 10.1016/j.fct.2014.06.026
Cai, C, Wu, P, Zhou, P, Yang, D, Hu, Z. Detection, risk assessment, and survey of four polycyclic aromatic hydrocarbon markers in infant formula powder. J Food Qual 2020;2020:1DUMYY. https://doi.org/10.1155/2020/2959532 .
doi: 10.1155/2020/2959532
Santonicola, S, Albrizio, S, Murru, N, Ferrante, MC, Mercogliano, R. Study on the occurrence of polycyclic aromatic hydrocarbons in milk and meat/fish based baby food available in Italy. Chemosphere 2017;184:467–72. https://doi.org/10.1016/j.chemosphere.2017.06.017 .
doi: 10.1016/j.chemosphere.2017.06.017
Aguinaga, N, Campillo, N, Viñas, P, Hernández-Córdoba, M. Determination of 16 polycyclic aromatic hydrocarbons in milk and related products using solid-phase microextraction coupled to gas chromatography-mass spectrometry. Anal Chim Acta 2007;596:285–90. https://doi.org/10.1016/j.aca.2007.06.005 .
doi: 10.1016/j.aca.2007.06.005
Badibostan, H, Feizy, J, Daraei, B, Shoeibi, S, Rajabnejad, SH, Asili, J, et al.. Polycyclic aromatic hydrocarbons in infant formulae, follow-on formulae, and baby foods in Iran: an assessment of risk. Food Chem Toxicol 2019;131:110640. https://doi.org/10.1016/j.fct.2019.110640 .
doi: 10.1016/j.fct.2019.110640
Ciecierska, M, Obiedziński, M. PAHS’ content in infant formulae, follow-on formulae, and in baby junior foodstuffs in relation to the EU food law requirements. Zywn Nauka Technol Jakosc/Food Sci Technol Qual 2009;16:37–45.
Cho, HK, Shin, HS. Evaluation of polycyclic aromatic hydrocarbon contents and risk assessment for infant formula in Korea. Food Sci Biotechnol 2012;21:1329–34. https://doi.org/10.1007/s10068-012-0175-1 .
doi: 10.1007/s10068-012-0175-1
Dobrinas, S, Soceanu, A, Popescu, V, Coatu, V. Polycyclic aromatic hydrocarbons and pesticides in milk powder. J Dairy Res 2016;83:261–5. https://doi.org/10.1017/s0022029916000169 .
doi: 10.1017/s0022029916000169
Londoño, VAG, Garcia, LP, Scussel, VM, Resnik, S. Polycyclic aromatic hydrocarbons in milk powders marketed in Argentina and Brazil. Food Addit Contam A 2013;30(9):1573–80. https://doi.org/10.1080/19440049.2013.810347 .
doi: 10.1080/19440049.2013.810347
Han, JH, Kim, MJ, Shin, HS. Evaluation of polycyclic aromatic hydrocarbon contents and risk assessment for infant formula in Korea. J Korean Soc Appl Biol Chem 2014;57:173–9. https://doi.org/10.1007/s13765-013-4219-x .
doi: 10.1007/s13765-013-4219-x
Kishikawa, N, Wada, M, Kuroda, N, Akiyama, S, Nakashima, K. Determination of polycyclic aromatic hydrocarbons in milk samples by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Anal Technol Biomed Life Sci 2003;789:257–64. https://doi.org/10.1016/s1570-0232(03)00066-7 .
doi: 10.1016/s1570-0232(03)00066-7
Yan, K, Wu, S, Gong, G, Xin, L, Ge, Y. Simultaneous determination of typical chlorinated, oxygenated, and European union priority polycyclic aromatic hydrocarbons in milk samples and milk powders. J Agric Food Chem 2021;69:3923–31. https://doi.org/10.1021/acs.jafc.1c00283 .
doi: 10.1021/acs.jafc.1c00283
JECFA. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives ; 2006. Available from: https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/4306
Ihedioha, JN, Okali, EE, Ekere, NR, Ezeofor, CC. Risk assessment of polycyclic aromatic hydrocarbons in pasta products consumed in Nigeria. Iran J Toxicol 2019;13:19–26. https://doi.org/10.32598/ijt.13.1.572.1 .
doi: 10.32598/ijt.13.1.572.1
Sadighara, P, Ghanati, K. The aflatoxin B1 content of peanut-based foods in Iran: a systematic review. Rev Environ Health 2022;37:29–33. https://doi.org/10.1515/reveh-2021-0065 .
doi: 10.1515/reveh-2021-0065
Duarte-Salles, T, Mendez, MA, Morales, E, Bustamante, M, Rodríguez-Vicente, A, Kogevinas, M, et al.. Dietary benzo(a)pyrene and fetal growth: effect modification by vitamin C intake and glutathione S-transferase P1 polymorphism. Environ Int 2012;45:1–8. https://doi.org/10.1016/j.envint.2012.04.002 .
doi: 10.1016/j.envint.2012.04.002
Bukowska, B, Mokra, K, Michałowicz, J. Benzo[a]pyrene-Environmental occurrence, human exposure, and mechanisms of toxicity. Int J Mol Sci 2022;23:6348. https://doi.org/10.3390/ijms23116348 .
doi: 10.3390/ijms23116348
Iwegbue, C, Bassey, FI. Concentrations and health hazards of polycyclic aromatic hydrocarbons in selected commercial brands of milk. J Food Meas Char 2013;7:177–84. https://doi.org/10.1007/s11694-013-9153-4 .
doi: 10.1007/s11694-013-9153-4
Nyiri, Z, Novák, M, Bodai, Z, Petrovics, N, Eke, Z. Determination of polycyclic aromatic hydrocarbons in infant formula using solid state urea clathrate formation with gas chromatography–tandem mass spectrometry. Talanta 2017;174:214–20. https://doi.org/10.1016/j.talanta.2017.05.065 .
doi: 10.1016/j.talanta.2017.05.065
Qu, C, Li, B, Wu, H, Wang, S, Giesy, JP. Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons. Environ Geochem Health 2015;37:587–601. https://doi.org/10.1007/s10653-014-9675-7 .
doi: 10.1007/s10653-014-9675-7
Cai, C, Wu, P, Zhou, P, Yang, D, Hu, Z. Detection, risk assessment, and survey of four polycyclic aromatic hydrocarbon markers in infant formula powder. J Food Qual 2020;2020:2959532. https://doi.org/10.1155/2020/2959532 .
doi: 10.1155/2020/2959532
Urban, M, Lesueur, C. Comparing d-SPE sorbents of the QuEChERS extraction method and EMR-lipid for the determination of polycyclic aromatic hydrocarbons (PAH4) in food of animal and plant origin. Food Anal Methods 2017;10:2111–24. https://doi.org/10.1007/s12161-016-0750-9 .
doi: 10.1007/s12161-016-0750-9
Rawash, ESA, Mohamed, GG, Souaya, ER, Khalil, LH, El-Chaghaby, GA, El-Gammal, MH. Distribution and health hazards of polycyclic aromatic hydrocarbons in Egyptian milk and dairy-based products. Beverages 2018;4:63. https://doi.org/10.3390/beverages4030063 .
doi: 10.3390/beverages4030063
Rey-Salgueiro, L, Martínez-Carballo, E, García-Falcón, MS, González-Barreiro, C, Simal-Gándara, J. Occurrence of polycyclic aromatic hydrocarbons and their hydroxylated metabolites in infant foods. Food Chem 2009;115:814–9. https://doi.org/10.1016/j.foodchem.2008.12.095 .
doi: 10.1016/j.foodchem.2008.12.095
Wu, M, Xia, Z, Zhang, Q, Yin, J, Zhou, Y, Yang, H. Distribution and health risk assessment on dietary exposure of polycyclic aromatic hydrocarbons in vegetables in Nanjing, China. J Chem 2016;2016:1581253. https://doi.org/10.1155/2016/1581253 .
doi: 10.1155/2016/1581253