Intramolecular Proton Transfer in the Radical Anion of Cytidine Monophosphate Sheds Light on the Sensitivities of Dry vs Wet DNA to Electron Attachment-Induced Damage.
Journal
Journal of the American Chemical Society
ISSN: 1520-5126
Titre abrégé: J Am Chem Soc
Pays: United States
ID NLM: 7503056
Informations de publication
Date de publication:
26 04 2023
26 04 2023
Historique:
medline:
2
5
2023
pubmed:
12
4
2023
entrez:
11
4
2023
Statut:
ppublish
Résumé
Single-strand breaks (SSBs) induced via electron attachment were previously observed in dry DNA under ultrahigh vacuum (UHV), while hydrated electrons were found not able to induce this DNA damage in an aqueous solution. To explain these findings, crossed electron-molecular beam (CEMB) and anion photoelectron spectroscopy (aPES) experiments coupled to density functional theory (DFT) modeling were used to demonstrate the fundamental importance of proton transfer (PT) in radical anions formed via electron attachment. Three molecular systems were investigated: 5'-monophosphate of 2'-deoxycytidine (dCMPH), where PT in the electron adduct is feasible, and two ethylated derivatives, 5'-diethylphosphate and 3',5'-tetraethyldiphosphate of 2'-deoxycytidine, where PT is blocked due to substitution of labile protons with the ethyl residues. CEMB and aPES experiments confirmed the cleavage of the C3'/C5'-O bond as the main dissociation channel related to electron attachment in the ethylated derivatives. In the case of dCMPH, however, electron attachment (in the aPES experiments) yielded its parent (intact) radical anion, dCMPH
Identifiants
pubmed: 37040588
doi: 10.1021/jacs.3c00591
pmc: PMC10141262
doi:
Substances chimiques
Protons
0
DNA
9007-49-2
Anions
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
9059-9071Références
J Phys Chem B. 2011 Mar 3;115(8):1911-7
pubmed: 21291288
Int J Radiat Biol Relat Stud Phys Chem Med. 1982 Jul;42(1):23-30
pubmed: 6213575
Biochemistry. 2005 Feb 15;44(6):1932-40
pubmed: 15697218
J Phys Chem A. 2021 Sep 9;125(35):7735-7749
pubmed: 34428376
Chem Rev. 2012 Nov 14;112(11):5603-40
pubmed: 22694487
J Phys Chem B. 2018 May 24;122(20):5212-5217
pubmed: 29706064
Acc Chem Res. 2006 Oct;39(10):772-9
pubmed: 17042477
Angew Chem Int Ed Engl. 2006 Mar 13;45(12):1893-6
pubmed: 16506258
Nat Commun. 2019 Jun 3;10(1):2388
pubmed: 31160602
J Chem Phys. 2018 Oct 28;149(16):164307
pubmed: 30384761
Int J Mol Sci. 2021 Jul 23;22(15):
pubmed: 34360644
J Am Chem Soc. 2019 Jul 3;141(26):10315-10323
pubmed: 31244176
Angew Chem Int Ed Engl. 2008;47(44):8518-20
pubmed: 18825764
Phys Chem Chem Phys. 2012 Jun 21;14(23):8287-9
pubmed: 22573242
Angew Chem Int Ed Engl. 2006 Jul 17;45(29):4851-5
pubmed: 16819742
Cancers (Basel). 2016 Feb 25;8(3):
pubmed: 26927177
Phys Chem Chem Phys. 2020 Apr 15;22(15):8171-8181
pubmed: 32249870
Angew Chem Int Ed Engl. 2017 Aug 28;56(36):10952-10955
pubmed: 28670830
Int J Radiat Biol. 1998 Oct;74(4):511-9
pubmed: 9798962
Org Biomol Chem. 2015 Nov 7;13(41):10362-9
pubmed: 26314288
Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5658-63
pubmed: 16585526
J Chem Phys. 2007 Aug 28;127(8):084321
pubmed: 17764262
Int J Mol Sci. 2021 Feb 26;22(5):
pubmed: 33652878
Science. 2000 Mar 3;287(5458):1658-60
pubmed: 10698742
J Chem Phys. 2008 Jan 28;128(4):044314
pubmed: 18247956
Curr Top Radiat Res Q. 1978 Jan;12(1-4):389-407
pubmed: 565271
J Phys Chem Lett. 2015 Aug 6;6(15):3091-7
pubmed: 26267207
J Am Chem Soc. 2003 Nov 12;125(45):13668-9
pubmed: 14599198
Chem Commun (Camb). 2020 Nov 24;56(93):14625-14628
pubmed: 33151221
J Phys Chem B. 2019 Feb 14;123(6):1274-1282
pubmed: 30657689
Sci Rep. 2014 Dec 09;4:7391
pubmed: 25487346
J Am Chem Soc. 2006 Jul 26;128(29):9322-3
pubmed: 16848454
J Chem Phys. 2008 Jan 28;128(4):044315
pubmed: 18247957
Phys Rev Lett. 2004 Aug 6;93(6):068101
pubmed: 15323664