The Lymphatic System in Kidney Disease.
Journal
Kidney360
ISSN: 2641-7650
Titre abrégé: Kidney360
Pays: United States
ID NLM: 101766381
Informations de publication
Date de publication:
01 Jun 2023
01 Jun 2023
Historique:
received:
19
12
2022
accepted:
07
03
2023
medline:
3
7
2023
pubmed:
6
4
2023
entrez:
5
4
2023
Statut:
ppublish
Résumé
The high-capacity vessels of the lymphatic system drain extravasated fluid and macromolecules from nearly every part of the body. However, far from merely a passive conduit for fluid removal, the lymphatic system also plays a critical and active role in immune surveillance and immune response modulation through the presentation of fluid, macromolecules, and trafficking immune cells to surveillance cells in regional draining lymph nodes before their return to the systemic circulation. The potential effect of this system in numerous disease states both within and outside of the kidney is increasingly being explored for their therapeutic potential. In the kidneys, the lymphatics play a critical role in both fluid and macromolecule removal to maintain oncotic and hydrostatic pressure gradients for normal kidney function, as well as in shaping kidney immunity, and potentially in balancing physiological pathways that promote healthy organ maintenance and responses to injury. In many states of kidney disease, including AKI, the demand on the preexisting lymphatic network increases for clearance of injury-related tissue edema and inflammatory infiltrates. Lymphangiogenesis, stimulated by macrophages, injured resident cells, and other drivers in kidney tissue, is highly prevalent in settings of AKI, CKD, and transplantation. Accumulating evidence points toward lymphangiogenesis being possibly harmful in AKI and kidney allograft rejection, which would potentially position lymphatics as another target for novel therapies to improve outcomes. However, the extent to which lymphangiogenesis is protective rather than maladaptive in the kidney in various settings remains poorly understood and thus an area of active research.
Identifiants
pubmed: 37019177
doi: 10.34067/KID.0000000000000120
pii: 02200512-202306000-00022
pmc: PMC10371377
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e841-e850Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK126815
Pays : United States
Informations de copyright
Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Society of Nephrology.
Références
Natale G, Bocci G, Ribatti D. Scholars and scientists in the history of the lymphatic system. J Anat. 2017;231(3):417–429. doi: 10.1111/joa.12644
doi: 10.1111/joa.12644
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic vessel network structure and physiology. Compr Physiol. 2018;9(1):207–299. doi: 10.1002/cphy.c180015
doi: 10.1002/cphy.c180015
Tamura R, Yoshida K, Toda M. Current understanding of lymphatic vessels in the central nervous system. Neurosurg Rev. 2020;43(4):1055–1064. doi: 10.1007/s10143-019-01133-0
doi: 10.1007/s10143-019-01133-0
Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–341. doi: 10.1038/nature14432
doi: 10.1038/nature14432
Donnan MD, Kenig-Kozlovsky Y, Quaggin SE. The lymphatics in kidney health and disease. Nat Rev Nephrol. 2021;17(10):655–675. doi: 10.1038/s41581-021-00438-y
doi: 10.1038/s41581-021-00438-y
Zheng W, Aspelund A, Alitalo K. Lymphangiogenic factors, mechanisms, and applications. J Clin Invest. 2014;124(3):878–887. doi: 10.1172/jci71603
doi: 10.1172/jci71603
Leak LV, Burke JF. Ultrastructural studies on the lymphatic anchoring filaments. J Cell Biol. 1968;36(1):129–149. doi: 10.1083/jcb.36.1.129
doi: 10.1083/jcb.36.1.129
Shelton EL, Yang H-C, Zhong J, Salzman MM, Kon V. Renal lymphatic vessel dynamics. Am J Physiol Ren Physiol. 2020;319(6):F1027–F1036. doi: 10.1152/ajprenal.00322.2020
doi: 10.1152/ajprenal.00322.2020
Renkin EM. Some consequences of capillary permeability to macromolecules: Starling’s hypothesis reconsidered. Am J Physiol. 1986;250(5):H706–H710. doi: 10.1152/ajpheart.1986.250.5.h706
doi: 10.1152/ajpheart.1986.250.5.h706
Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev. 2012;92(3):1005–1060. doi: 10.1152/physrev.00037.2011
doi: 10.1152/physrev.00037.2011
Edwards JM. Lymphatics and lymph circulation: physiology and pathology. Istvan Rusznyak, Mihaly Foldi, Gyorgy Szabo, L. Youlten. Quarterly Rev Biol. 1969;44(1):112. doi: 10.1086/406047
doi: 10.1086/406047
Seeger M, Bewig B, Günther R, Schafmayer C, Vollnberg B, Rubin D. Terminal part of thoracic duct: high-resolution US imaging. Radiology. 2009;252(3):897–904. doi: 10.1148/radiol.2531082036
doi: 10.1148/radiol.2531082036
Cuttino JT Jr, Clark RL, Jennette JC. Microradiographic demonstration of human intrarenal microlymphatic pathways. Urol Radiol. 1989;11(1):83–87. doi: 10.1007/bf02926482
doi: 10.1007/bf02926482
Ratnayake CBB, Escott ABJ, Phillips ARJ, Windsor JA. The anatomy and physiology of the terminal thoracic duct and ostial valve in health and disease: potential implications for intervention. J Anat. 2018;233:1–14. doi: 10.1111/joa.12811
doi: 10.1111/joa.12811
Itkin M, Rockson SG, Burkhoff D. Pathophysiology of the lymphatic system in patients with heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2021;78(3):278–290. doi: 10.1016/j.jacc.2021.05.021
doi: 10.1016/j.jacc.2021.05.021
Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism. Nat Med. 2009;15(5):545–552. doi: 10.1038/nm.1960
doi: 10.1038/nm.1960
Huang L-H, Elvington A, Randolph GJ. The role of the lymphatic system in cholesterol transport. Front Pharmacol. 2015;6:182. doi: 10.3389/fphar.2015.00182
doi: 10.3389/fphar.2015.00182
Rader DJ, Hovingh GK. HDL and cardiovascular disease. Lancet. 2014;384(9943):618–625. doi: 10.1016/s0140-6736(14)61217-4
doi: 10.1016/s0140-6736(14)61217-4
Rohatgi A. Reverse cholesterol transport and atherosclerosis. Arterioscler Thromb Vasc Biol. 2019:39(1):2–4. doi: 10.1161/ATVBAHA.118.311978
doi: 10.1161/ATVBAHA.118.311978
Petrova TV, Koh GY. Biological functions of lymphatic vessels. Science. 2020;369(6500):eaax4063. doi: 10.1126/science.aax4063
doi: 10.1126/science.aax4063
Farnsworth RH, Karnezis T, Maciburko SJ, Mueller SN, Stacker SA. The interplay between lymphatic vessels and chemokines. Front Immunol. 2019;10:518. doi: 10.3389/fimmu.2019.00518
doi: 10.3389/fimmu.2019.00518
Johnson LA, Clasper S, Holt AP, Lalor PF, Baban D, Jackson DG. An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J Exp Med. 2006;175(5):2763–2777. doi: 10.1083/jcb1755oia11
doi: 10.1083/jcb1755oia11
Teoh D, Johnson LA, Hanke T, McMichael AJ, Jackson DG. Blocking development of a CD8+ T cell response by targeting lymphatic recruitment of APC. J Immunol. 2009;182(4):2425–2431. doi: 10.4049/jimmunol.0803661
doi: 10.4049/jimmunol.0803661
Vigl B, Aebischer D, Nitschké M, Iolyeva M, Röthlin T, Antsiferova O. Tissue inflammation modulates gene expression of lymphatic endothelial cells and dendritic cell migration in a stimulus-dependent manner. Blood. 2011;118(1):205–215. doi: 10.1182/blood-2010-12-326447
doi: 10.1182/blood-2010-12-326447
Nitschké M, Aebischer D, Abadier M, Haener S, Lucic M, Vigl B. Differential requirement for ROCK in dendritic cell migration within lymphatic capillaries in steady-state and inflammation. Blood. 2012;120(11):2249–2258. doi: 10.1182/blood-2012-03-417923
doi: 10.1182/blood-2012-03-417923
Aebischer D, Iolyeva M, Halin C. The inflammatory response of lymphatic endothelium. Angiogenesis. 2014;17(2):383–393. doi: 10.1007/s10456-013-9404-3
doi: 10.1007/s10456-013-9404-3
Förster R, Braun A, Worbs T. Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol. 2012;33(6):271–280. doi: 10.1016/j.it.2012.02.007
doi: 10.1016/j.it.2012.02.007
Brown MN, Fintushel SR, Lee MH, Jennrich S, Geherin SA, Hay JB. Chemoattractant receptors and lymphocyte egress from extralymphoid tissue: changing requirements during the course of inflammation. J Immunol. 2010;185(8):4873–4882. doi: 10.4049/jimmunol.1000676
doi: 10.4049/jimmunol.1000676
Mueller SN, Germain RN. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol. 2009;9:618–629. doi: 10.1038/nri2588
doi: 10.1038/nri2588
Roozendaal R, Mebius RE. Stromal cell–immune cell interactions. Annu Rev Immunol. 2011;29(1):23–43. doi: 10.1146/annurev-immunol-031210-101357
doi: 10.1146/annurev-immunol-031210-101357
Tamburini BA, Burchill MA, Kedl RM. Antigen capture and archiving by lymphatic endothelial cells following vaccination or viral infection. Nat Commun. 2014;5(1):3989. doi: 10.1038/ncomms4989
doi: 10.1038/ncomms4989
Cohen JN, Guidi CJ, Tewalt EF, Qiao H, Rouhani SJ, Ruddell A. Lymph node–resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med. 2010;207(4):681–688. doi: 10.1084/jem.20092465
doi: 10.1084/jem.20092465
Lane RS, Femel J, Breazeale AP, Loo CP, Thibault G, Kaempf A. IFNγ-activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. J Exp Med. 2018;215(12):3057–3074. doi: 10.1084/jem.20180654
doi: 10.1084/jem.20180654
Humbert M, Hugues S, Dubrot J. Shaping of peripheral T cell responses by lymphatic endothelial cells. Front Immunol. 2016;7:684. doi: 10.3389/fimmu.2016.00684
doi: 10.3389/fimmu.2016.00684
Ishikawa Y, Akasaka Y, Kiguchi H, Akishima-Fukasawa Y, Hasegawa T, Ito K. The human renal lymphatics under normal and pathological conditions. Histopathology. 2006;49(3):265–273. doi: 10.1111/j.1365-2559.2006.02478.x
doi: 10.1111/j.1365-2559.2006.02478.x
Pinter GG. Renal lymph: vital for the kidney and valuable for the physiologist. Physiology. 1988;3(5):189–193. doi: 10.1152/physiologyonline.1988.3.5.189
doi: 10.1152/physiologyonline.1988.3.5.189
Russell PS, Hong J, Windsor JA, Itkin M, Phillips ARJ. Renal lymphatics: anatomy, physiology, and clinical implications. Front Physiol. 2019;10:251. doi: 10.3389/fphys.2019.00251
doi: 10.3389/fphys.2019.00251
Goodwin WE, Kaufman JJ. The renal lymphatics. I. Review of some of the pertinent literature. Urol Surv. 1956;6(5):305–329. https://pubmed.ncbi.nlm.nih.gov/13371707/
Katz YJ. Some factors affecting renal lymphatic pressure. Circ Res. 1958;6(4):452–455. doi: 10.1161/01.res.6.4.452
doi: 10.1161/01.res.6.4.452
Balasubbramanian D, Baranwal G, Clark M-CC, Goodlett BL, Mitchell BM, Rutkowski JM. Kidney-specific lymphangiogenesis increases sodium excretion and lowers blood pressure in mice. J Hypertens. 2020;38(5):874–885. doi: 10.1097/hjh.0000000000002349
doi: 10.1097/hjh.0000000000002349
Coxam B, Sabine A, Bower NI, Smith KA, Pichol-Thievend C, Skoczylas R. Pkd1 regulates lymphatic vascular morphogenesis during development. Cell Rep. 2014;7(3):623–633. doi: 10.1016/j.celrep.2014.03.063
doi: 10.1016/j.celrep.2014.03.063
Outeda P, Huso DL, Fisher SA, Halushka MK, Kim H, Qian F. Polycystin signaling is required for directed endothelial cell migration and lymphatic development. Cell Rep. 2014;7(3):634–644. doi: 10.1016/j.celrep.2014.03.064
doi: 10.1016/j.celrep.2014.03.064
Kim K-W, Song J-H. Emerging roles of lymphatic vasculature in immunity. Immune Netw. 2017;17(1):68–76. doi: 10.4110/in.2017.17.1.68
doi: 10.4110/in.2017.17.1.68
Vaahtomeri K, Karaman S, Mäkinen T, Alitalo K. Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev. 2017;31(16):1615–1634. doi: 10.1101/gad.303776.117
doi: 10.1101/gad.303776.117
Choi SY, Lim SW, Salimi S, Yoo EJ, Lee-Kwon W, Lee HH. Tonicity-responsive enhancer-binding protein mediates hyperglycemia-induced inflammation and vascular and renal injury. J Am Soc Nephrol. 2018;29(2):492–504. doi: 10.1681/ASN.2017070718
doi: 10.1681/ASN.2017070718
Mumprecht V, Detmar M. Lymphangiogenesis and cancer metastasis. J Cell Mol Med. 2009;13(8a):1405–1416. doi: 10.1111/j.1582-4934.2009.00834.x
doi: 10.1111/j.1582-4934.2009.00834.x
Sakamoto I, Ito Y, Mizuno M, Suzuki Y, Sawai A, Tanaka A. Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int. 2009;75(8):828–838. doi: 10.1038/ki.2008.661
doi: 10.1038/ki.2008.661
Stuht S, Gwinner W, Franz I, Schwarz A, Jonigk D, Kreipe H. Lymphatic neoangiogenesis in human renal allografts: results from sequential protocol biopsies. Am J Transplant. 2007;7(2):377–384. doi: 10.1111/j.1600-6143.2006.01638.x
doi: 10.1111/j.1600-6143.2006.01638.x
Pei G, Yao Y, Yang Q, Wang M, Wang Y, Wu J. Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. Sci Adv. 2019;5(6):eaaw5075. doi: 10.1126/sciadv.aaw5075
doi: 10.1126/sciadv.aaw5075
Zarjou A, Black LM, Bolisetty S, Traylor AM, Bowhay SA, Zhang M-Z. Dynamic signature of lymphangiogenesis during acute kidney injury and chronic kidney disease. Lab Invest. 2019;99(9):1376–1388. doi: 10.1038/s41374-019-0259-0
doi: 10.1038/s41374-019-0259-0
Uchiyama T, Takata S, Ishikawa H, Sawa Y. Altered dynamics in the renal lymphatic circulation of type 1 and type 2 diabetic mice. Acta Histochem Cytochem. 2013;46:97–104. doi: 10.1267/ahc.13006
doi: 10.1267/ahc.13006
Lee AS, Lee JE, Jung YJ, et al. Vascular endothelial growth factor-C and -D are involved in lymphangiogenesis in mouse unilateral ureteral obstruction. Kidney Int. 2013;83(1):50–62. doi: 10.1038/ki.2012.312
doi: 10.1038/ki.2012.312
Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010;140(4):460–476. doi: 10.1016/j.cell.2010.01.045
doi: 10.1016/j.cell.2010.01.045
Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation. 2016;23(2):95–121. doi: 10.1111/micc.12259
doi: 10.1111/micc.12259
Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med. 2006;12(2):230–234. doi: 10.1038/nm1340
doi: 10.1038/nm1340
Masood F, Bhattaram R, Rosenblatt MI, Kazlauskas A, Chang J-H, Azar DT. Lymphatic vessel regression and its therapeutic applications: learning from principles of blood vessel regression. Front Physiol. 2022;13:846936. doi: 10.3389/fphys.2022.846936
doi: 10.3389/fphys.2022.846936
Xu L, Guo J, Moledina DG, Cantley LG. Immune-mediated tubule atrophy promotes acute kidney injury to chronic kidney disease transition. Nat Commun. 2022;13(1):4892. doi: 10.1038/s41467-022-32634-0
doi: 10.1038/s41467-022-32634-0
Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684–696. doi: 10.1038/nrneph.2011.149
doi: 10.1038/nrneph.2011.149
Hasegawa S, Nakano T, Torisu K, Tsuchimoto A, Eriguchi M, Haruyama N. Vascular endothelial growth factor-C ameliorates renal interstitial fibrosis through lymphangiogenesis in mouse unilateral ureteral obstruction. Lab Invest. 2017;97(12):1439–1452. doi: 10.1038/labinvest.2017.77
doi: 10.1038/labinvest.2017.77
Kasinath V, Yilmam OA, Uehara M, Jiang L, Ordikhani F, Li X. Activation of fibroblastic reticular cells in kidney lymph node during crescentic glomerulonephritis. Kidney Int. 2019;95(2):310–320. doi: 10.1016/j.kint.2018.08.040
doi: 10.1016/j.kint.2018.08.040
Yamashita M, Niisato M, Kawasaki Y, Karaman S, Robciuc MR, Shibata Y. VEGF-C/VEGFR-3 signalling in macrophages ameliorates acute lung injury. Eur Respir J. 2022;59(4):2100880. doi: 10.1183/13993003.00880-2021
doi: 10.1183/13993003.00880-2021
Zhang Y, Lu Y, Ma L, Cao X, Xiao J, Chen J. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock. Immunity. 2014;40(4):501–514. doi: 10.1016/j.immuni.2014.01.013
doi: 10.1016/j.immuni.2014.01.013
Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 2014;5:75. doi: 10.3389/fphys.2014.00075
doi: 10.3389/fphys.2014.00075
Hwang SD, Song JH, Kim Y, Lim JH, Kim MY, Kim EN. Inhibition of lymphatic proliferation by the selective VEGFR-3 inhibitor SAR131675 ameliorates diabetic nephropathy in db/db mice. Cell Death Dis. 2019;10(3):219. doi: 10.1038/s41419-019-1436-1
doi: 10.1038/s41419-019-1436-1
Onions KL, Gamez M, Buckner NR, Baker SL, Betteridge KB, Desideri S. VEGFC reduces glomerular albumin permeability and protects against alterations in VEGF receptor expression in diabetic nephropathy. Diabetes. 2019;68(1):172–187. doi: 10.2337/db18-0045
doi: 10.2337/db18-0045
Foster RR, Satchell SC, Seckley J, Emmett MS, Joory K, Xing CY. VEGF-C promotes survival in podocytes. Am J Physiol Ren Physiol. 2006;291(1):F196–F207. doi: 10.1152/ajprenal.00431.200
doi: 10.1152/ajprenal.00431.200
Jeong J, Tanaka M, Iwakiri Y. Hepatic lymphatic vascular system in health and disease. J Hepatol. 2022;77(1):206–218. doi: 10.1016/j.jhep.2022.01.025
doi: 10.1016/j.jhep.2022.01.025
Song L, Chen X, Swanson TA, LaViolette B, Pang J, Cunio T. Lymphangiogenic therapy prevents cardiac dysfunction by ameliorating inflammation and hypertension. Elife. 2020;9:e58376. doi: 10.7554/eLife.58376
doi: 10.7554/eLife.58376
D’Alessio S, Correale C, Tacconi C, Gandelli A, Pietrogrande G, Vetrano S. VEGF-C–dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J Clin Invest. 2014;124(9):3863–3878. doi: 10.1172/jci72189
doi: 10.1172/jci72189
Schwager S, Renner S, Hemmerle T, Karaman S, Proulx ST, Fetz R. Antibody-mediated delivery of VEGF-C potently reduces chronic skin inflammation. JCI Insight. 2018;3(23):e124850. doi: 10.1172/jci.insight.124850
doi: 10.1172/jci.insight.124850
Huang JL, Woolf AS, Kolatsi-Joannou M, Baluk P, Sandford RN, Peters DJM. Vascular endothelial growth factor C for polycystic kidney diseases. J Am Soc Nephrol. 2016;27(1):69–77. doi: 10.1681/ASN.2014090856
doi: 10.1681/ASN.2014090856
Chade AR. Vascular endothelial growth factor therapy for the kidney: are we there yet? J Am Soc Nephrol. 2016;27:1–3. doi: 10.1681/ASN.2015050491
doi: 10.1681/ASN.2015050491
Cheng J, Wang J, Liu Y-T, Zhang T, Sun A, Wang W. Renal lymphatic ligation aggravates renal dysfunction through induction of tubular epithelial cell apoptosis in mononephrectomized rats. Clin Nephrol. 2013;79(02):124–131. doi: 10.5414/cn107627
doi: 10.5414/cn107627
Zhang T, Guan G, Liu G, Sun J, Chen B, Li X. Disturbance of lymph circulation develops renal fibrosis in rats with or without contralateral nephrectomy. Nephrology. 2008;13(2):128–138. doi: 10.1111/j.1440-1797.2007.00851.x
doi: 10.1111/j.1440-1797.2007.00851.x
Yazdani S, Poosti F, Kramer AB, Mirković K, Kwakernaak AJ, Hovingh M. Proteinuria triggers renal lymphangiogenesis prior to the development of interstitial fibrosis. PLoS One. 2012;7(11):e50209. doi: 10.1371/journal.pone.0050209
doi: 10.1371/journal.pone.0050209
Kajiya K, Hirakawa S, Detmar M. Vascular endothelial growth factor-A mediates ultraviolet B-induced impairment of lymphatic vessel function. Am J Pathol. 2006;169(4):1496–1503. doi: 10.2353/ajpath.2006.060197
doi: 10.2353/ajpath.2006.060197
Abouelkheir GR, Upchurch BD, Rutkowski JM. Lymphangiogenesis: fuel, smoke, or extinguisher of inflammation’s fire? Exp Biol Med. 2017;242(8):884–895. doi: 10.1177/1535370217697385
doi: 10.1177/1535370217697385
Heller F, Lindenmeyer MT, Cohen CD, Brandt U, Draganovici D, Fischereder M. The contribution of B cells to renal interstitial inflammation. Am J Pathol. 2007;170(2):457–468. doi: 10.2353/ajpath.2007.060554
doi: 10.2353/ajpath.2007.060554
Jafree DJ, Long DA. Beyond a passive conduit: implications of lymphatic biology for kidney diseases. J Am Soc Nephrol. 2020;31(6):1178–1190. doi: 10.1681/ASN.2019121320
doi: 10.1681/ASN.2019121320
Harper SJF, Ali JM, Wlodek E, Negus MC, Harper IG, Chhabra M. CD8 T-cell recognition of acquired alloantigen promotes acute allograft rejection. Proc Natl Acad Sci U S A. 2015;112(41):12788–12793. doi: 10.1073/pnas.1513533112
doi: 10.1073/pnas.1513533112
Herrera OB, Golshayan D, Tibbott R, Ochoa FS, James MJ, Marelli-Berg FM. A novel pathway of alloantigen presentation by dendritic cells. J Immunol. 2004;173(8):4828–4837. doi: 10.4049/jimmunol.173.8.4828
doi: 10.4049/jimmunol.173.8.4828
Ranghino A, Segoloni GP, Lasaponara F, Biancone L. Lymphatic disorders after renal transplantation: new insights for an old complication. Clin Kidney J. 2015;8(5):615–622. doi: 10.1093/ckj/sfv064
doi: 10.1093/ckj/sfv064
Pedersen NC, Morris B. The role of the lymphatic system in the rejection of homografts: a study of lymph from renal transplants. J Exp Med. 1970;131(5):936–969. doi: 10.1084/jem.131.5.936
doi: 10.1084/jem.131.5.936
Lin J, Chen Y, Zhu H, Cheng K, Wang H, Yu X. Lymphatic Reconstruction in kidney allograft aggravates chronic rejection by promoting alloantigen presentation. Front Immunol. 2021;12:796260. doi: 10.3389/fimmu.2021.796260
doi: 10.3389/fimmu.2021.796260
Malek P, Vrubel J. Lymphatic system and organ transplantation. Lymphology. 1968;1(1):4–22. https://pubmed.ncbi.nlm.nih.gov/4881373/
Kerjaschki D, Regele HM, Moosberger I, Nagy-Bojarski K, Watschinger B, Soleiman A. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol. 2004;15(3):603–612. doi: 10.1097/01.ASN.0000113316.52371.2e
doi: 10.1097/01.ASN.0000113316.52371.2e
Adair A, Mitchell DR, Kipari T, Qi F, Bellamy COC, Robertson F. Peritubular capillary rarefaction and lymphangiogenesis in chronic allograft failure. Transplantation. 2007;83(12):1542–1550. doi: 10.1097/01.tp.0000266689.93615.cd
doi: 10.1097/01.tp.0000266689.93615.cd
Vass DG, Shrestha B, Haylor J, Hughes J, Marson L. Inflammatory lymphangiogenesis in a rat transplant model of interstitial fibrosis and tubular atrophy. Transplant Int. 2012;25(7):792–800. doi: 10.1111/j.1432-2277.2012.01482.x
doi: 10.1111/j.1432-2277.2012.01482.x
Dashkevich A, Heilmann C, Kayser G, Germann M, Beyersdorf F, Passlick B. Lymph angiogenesis after lung transplantation and relation to acute organ rejection in humans. Ann Thorac Surg. 2010;90(2):406–411. doi: 10.1016/j.athoracsur.2010.03.013
doi: 10.1016/j.athoracsur.2010.03.013
Edwards LA, Nowocin AK, Jafari NV, Meader LL, Brown K, Sarde A. Chronic rejection of cardiac allografts is associated with increased lymphatic flow and cellular trafficking. Circulation. 2018;137(5):488–503. doi: 10.1161/circulationaha.117.028533
doi: 10.1161/circulationaha.117.028533
Nykänen AI, Sandelin H, Krebs R, et al. Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor-3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts. Circulation. 2010;121(12):1413–1422. doi: 10.1161/circulationaha.109.910703
doi: 10.1161/circulationaha.109.910703
Wong BW. Lymphatic vessels in solid organ transplantation and immunobiology. Am J Transplant. 2020;20(8):1992–2000. doi: 10.1111/ajt.15806
doi: 10.1111/ajt.15806
Johnson LA, Jackson DG. Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration. Int Immunol. 2010;22(10):839–849. doi: 10.1093/intimm/dxq435
doi: 10.1093/intimm/dxq435