The E2 glycoprotein holds key residues for Mayaro virus adaptation to the urban Aedes aegypti mosquito.
Journal
PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
04
04
2022
accepted:
13
03
2023
revised:
17
04
2023
medline:
19
4
2023
pubmed:
6
4
2023
entrez:
5
4
2023
Statut:
epublish
Résumé
Adaptation to mosquito vectors suited for transmission in urban settings is a major driver in the emergence of arboviruses. To better anticipate future emergence events, it is crucial to assess their potential to adapt to new vector hosts. In this work, we used two different experimental evolution approaches to study the adaptation process of an emerging alphavirus, Mayaro virus (MAYV), to Ae. aegypti, an urban mosquito vector of many other arboviruses. We identified E2-T179N as a key mutation increasing MAYV replication in insect cells and enhancing transmission after escaping the midgut of live Ae. aegypti. In contrast, this mutation decreased viral replication and binding in human fibroblasts, a primary cellular target of MAYV in humans. We also showed that MAYV E2-T179N generates reduced viremia and displays less severe tissue pathology in vivo in a mouse model. We found evidence in mouse fibroblasts that MAYV E2-T179N is less dependent on the Mxra8 receptor for replication than WT MAYV. Similarly, exogenous expression of human apolipoprotein receptor 2 and Mxra8 enhanced WT MAYV replication compared to MAYV E2-T179N. When this mutation was introduced in the closely related chikungunya virus, which has caused major outbreaks globally in the past two decades, we observed increased replication in both human and insect cells, suggesting E2 position 179 is an important determinant of alphavirus host-adaptation, although in a virus-specific manner. Collectively, these results indicate that adaptation at the T179 residue in MAYV E2 may result in increased vector competence-but coming at the cost of optimal replication in humans-and may represent a first step towards a future emergence event.
Identifiants
pubmed: 37018377
doi: 10.1371/journal.ppat.1010491
pii: PPATHOGENS-D-22-00591
pmc: PMC10109513
doi:
Substances chimiques
Glycoproteins
0
Mxra8 protein, mouse
0
Immunoglobulins
0
Membrane Proteins
0
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1010491Subventions
Organisme : NIAID NIH HHS
ID : R01 AI141707
Pays : United States
Informations de copyright
Copyright: © 2023 Cereghino et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
J Virol. 1998 Sep;72(9):7349-56
pubmed: 9696831
Bioinformatics. 2014 Oct 15;30(20):2981-2
pubmed: 24996895
J Virol. 2021 Nov 9;95(23):e0112221
pubmed: 34549980
Nature. 2022 Feb;602(7897):475-480
pubmed: 34929721
Virology. 2020 Dec;551:58-63
pubmed: 33032077
Lancet. 2019 Nov 30;394(10213):1991-1992
pubmed: 31753318
Vector Borne Zoonotic Dis. 2012 Jan;12(1):42-6
pubmed: 21923266
Nature. 2021 Apr;592(7852):116-121
pubmed: 33106671
Emerg Infect Dis. 2016 Apr;22(4):750-2
pubmed: 26981875
Am J Trop Med Hyg. 2011 Oct;85(4):750-7
pubmed: 21976583
Nature. 2018 May;557(7706):570-574
pubmed: 29769725
J Virol. 2015 Dec 16;90(5):2418-33
pubmed: 26676771
J Am Mosq Control Assoc. 1991 Mar;7(1):89-93
pubmed: 1646286
Front Microbiol. 2021 Feb 25;12:615165
pubmed: 33717005
Emerg Infect Dis. 2014 Jul;20(7):1255-7
pubmed: 24960052
Sci Rep. 2017 Aug 18;7(1):8718
pubmed: 28821712
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):E2294-303
pubmed: 22853955
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Emerg Infect Dis. 2012 Apr;18(4):695-6
pubmed: 22469145
Bioinformatics. 2010 Mar 1;26(5):589-95
pubmed: 20080505
PLoS Pathog. 2013 Mar;9(3):e1003232
pubmed: 23555248
J Virol. 2016 Jul 11;90(15):6884-95
pubmed: 27194763
PLoS Med. 2006 Jul;3(7):e263
pubmed: 16700631
Am J Trop Med Hyg. 2019 Dec;101(6):1212-1218
pubmed: 31571566
Emerg Infect Dis. 2007 May;13(5):764-7
pubmed: 17553261
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W382-8
pubmed: 15980494
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W522-5
pubmed: 17488841
Cell. 2015 Nov 19;163(5):1095-1107
pubmed: 26553503
PLoS Negl Trop Dis. 2020 Apr 14;14(4):e0007518
pubmed: 32287269
Med Vet Entomol. 2018 Dec;32(4):436-442
pubmed: 30006976
Virology. 2018 Jun 20;521:138-148
pubmed: 29935423
Proc Natl Acad Sci U S A. 2011 May 10;108(19):7872-7
pubmed: 21518887
Cell Rep. 2019 Sep 3;28(10):2647-2658.e5
pubmed: 31484075
Pac Symp Biocomput. 2002;:310-22
pubmed: 11928486
Nature. 2010 Dec 2;468(7324):709-12
pubmed: 21124458
Emerg Microbes Infect. 2018 Sep 26;7(1):163
pubmed: 30254258
J Infect. 2010 Oct;61(4):343-5
pubmed: 20600300
Bioinformatics. 2012 Sep 1;28(17):2249-55
pubmed: 22782545
J Virol. 2017 Feb 28;91(6):
pubmed: 28077647
Cell. 2019 Jun 13;177(7):1714-1724.e12
pubmed: 31080063
J Glob Infect Dis. 2011 Oct;3(4):317-23
pubmed: 22223990
PLoS Pathog. 2017 Mar 27;13(3):e1006288
pubmed: 28346537
Am J Trop Med Hyg. 1998 Sep;59(3):452-6
pubmed: 9749643
South Med J. 2005 Apr;98(4):484-5
pubmed: 15898531
J Public Health Manag Pract. 2019 May/Jun;25(3):277-287
pubmed: 30933006
Am J Trop Med Hyg. 1981 May;30(3):689-98
pubmed: 6266265
Emerg Infect Dis. 2003 Oct;9(10):1326-9
pubmed: 14609474
Nat Commun. 2021 May 24;12(1):3038
pubmed: 34031424
Rev Med Inst Mex Seguro Soc. 2006 Jul-Aug;44(4):347-53
pubmed: 16904038
J Chem Theory Comput. 2012 Sep 11;8(9):3314-21
pubmed: 26605738
Sci Rep. 2019 Dec 31;9(1):20399
pubmed: 31892710
PeerJ. 2017 Apr 27;5:e3245
pubmed: 28462045
PLoS Negl Trop Dis. 2018 Nov 7;12(11):e0006895
pubmed: 30403665
Nat Microbiol. 2019 May;4(5):876-887
pubmed: 30886357
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8276-E8285
pubmed: 30104379
J Virol Methods. 2007 Feb;139(2):181-8
pubmed: 17092574
Nat Commun. 2014 Jun 16;5:4084
pubmed: 24933611
J Chem Theory Comput. 2018 Apr 10;14(4):1823-1827
pubmed: 29506385
Euro Surveill. 2010 May 06;15(18):
pubmed: 20460093
Virology. 2019 Sep;535:227-231
pubmed: 31325837
Emerg Infect Dis. 2015 Oct;21(10):1742-50
pubmed: 26401714
J Virol. 2012 Mar;86(5):2585-99
pubmed: 22190727
PLoS Pathog. 2019 Nov 11;15(11):e1008089
pubmed: 31710653
PLoS Negl Trop Dis. 2018 Jul 2;12(7):e0006599
pubmed: 29965958
Microorganisms. 2019 May 14;7(5):
pubmed: 31091828
Am J Trop Med Hyg. 1981 May;30(3):674-81
pubmed: 6266263
Nat Commun. 2020 Jun 5;11(1):2842
pubmed: 32503971
Ann Clin Microbiol Antimicrob. 2016 Jul 22;15(1):42
pubmed: 27449770
Int J Infect Dis. 2020 Mar;92:253-258
pubmed: 31978575
J Chem Theory Comput. 2011 Feb 8;7(2):525-37
pubmed: 26596171
BMC Bioinformatics. 2013 Feb 08;14:45
pubmed: 23390980
Cell. 2021 Aug 19;184(17):4392-4400.e4
pubmed: 34289344
Microbes Infect. 2016 Dec;18(12):724-734
pubmed: 27989728
Bioinformatics. 2015 Jun 15;31(12):2032-4
pubmed: 25697820
Parasit Vectors. 2020 Dec 9;13(1):613
pubmed: 33298165
Am J Trop Med Hyg. 1957 Nov;6(6):1012-6
pubmed: 13487973
Nat Protoc. 2009;4(4):495-505
pubmed: 19300443
Am J Trop Med Hyg. 1959 May;8(3):372-96
pubmed: 13661542