Concave and convex growth do not differ over tethered vertebral segments, even with open tri-radiate cartilage.


Journal

Spine deformity
ISSN: 2212-1358
Titre abrégé: Spine Deform
Pays: England
ID NLM: 101603979

Informations de publication

Date de publication:
07 2023
Historique:
received: 19 12 2022
accepted: 18 03 2023
medline: 14 6 2023
pubmed: 3 4 2023
entrez: 2 4 2023
Statut: ppublish

Résumé

To assess the following hypotheses related to vertebral body tethering (VBT): 1. VBT is associated with asymmetric (concave > convex) increases in height over the instrumented vertebra. 2. The instrumented Cobb angle improves following VBT surgery with growth. This is a retrospective case series of pediatric patients from a multicenter scoliosis registry treated with VBT between 2013 to 2021. patients with standing radiographs at < 4 months and ≥ 2 years after surgery. Distances between the superior endplate of the UIV and the inferior endplate of the LIV were measured at the concave corner, mid-point, and convex corner of the endplates. The UIV-LIV angle was recorded. Subgroup analyses included comparing different Risser scores and tri-radiate cartilage (TRC) closed versus open using student t-tests. 83 patients met inclusion criteria (92% female; age at time of surgery 12.5 ± 1.4 years) with mean follow-up time of 3.8 ± 1.4 years. Risser scores at surgery were: 0 (n = 33), 1 (n = 12), 2 (n = 10), 3 (n = 11), 4 (n = 12), and 5 (n = 5). Of the 33 Risser 0 patients, 17 had an open TRC, 16 had a closed TRC. The UIV-LIV distance at concave, middle, and convex points significantly increased from immediate post-op to final-follow-up for Risser 0 patients, but not for Risser 1-5 patients. Increases in UIV-LIV distance were not significantly different between concave, middle, and convex points for all groups. There was no significant improvement or worsening in UIV-LIV angle for any group. At a mean of 3.8 years following VBT, 33 Risser 0 patients demonstrated significant growth in the instrumented segment, though there was no difference between concave or convex growth, even for patients with open TRC.

Identifiants

pubmed: 37004694
doi: 10.1007/s43390-023-00683-0
pii: 10.1007/s43390-023-00683-0
pmc: PMC10261211
doi:

Types de publication

Multicenter Study Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

881-886

Informations de copyright

© 2023. The Author(s).

Références

Spine Deform. 2022 Nov;10(6):1233-1243
pubmed: 35841473
Eur Spine J. 2007 Oct;16(10):1621-8
pubmed: 17653775
J Pediatr Orthop. 2011 Jan-Feb;31(1 Suppl):S99-106
pubmed: 21173627
J Bone Joint Surg Am. 2010 Jan;92(1):202-9
pubmed: 20048114
Spine Deform. 2023 Jan;11(1):115-121
pubmed: 35997944
Biomed Res Int. 2015;2015:438452
pubmed: 26618169
Spine Deform. 2020 Apr;8(2):221-226
pubmed: 32026438
Spine (Phila Pa 1976). 2020 Nov 15;45(22):E1483-E1492
pubmed: 32756290
Eur Spine J. 2019 Jun;28(6):1301-1313
pubmed: 30848364
Spine Deform. 2021 Mar;9(2):481-489
pubmed: 33113121
J Bone Joint Surg Am. 2020 Jul 1;102(13):1169-1176
pubmed: 32618924
Spine Deform. 2021 Jan;9(1):149-153
pubmed: 32827087
Global Spine J. 2021 Jan;11(1):76-80
pubmed: 32875858
Spine (Phila Pa 1976). 2014 Sep 15;39(20):1688-93
pubmed: 24921854
J Bone Joint Surg Am. 2014 Aug 20;96(16):1359-67
pubmed: 25143496
J Pediatr Orthop. 2020 Nov/Dec;40(10):575-580
pubmed: 32427800
Spine Deform. 2022 Jul;10(4):791-797
pubmed: 35064912
Spine Deform. 2018 Jul - Aug;6(4):344-350
pubmed: 29886903
J Bone Joint Surg Am. 1981 Jun;63(5):702-12
pubmed: 6453874
Ann Transl Med. 2020 Jan;8(2):31
pubmed: 32055622
Spine (Phila Pa 1976). 2020 Sep 15;45(18):E1203-E1209
pubmed: 32341305
J Pediatr Orthop. 2014 Apr-May;34(3):260-74
pubmed: 23995146
J Bone Joint Surg Am. 2003 Dec;85(12):2303-9
pubmed: 14668498
J Bone Joint Surg Am. 2018 Oct 3;100(19):1691-1697
pubmed: 30277999
J Pediatr Orthop. 2014 Jan;34(1):1-7
pubmed: 23934092
Eur Spine J. 2015 Jul;24(7):1533-9
pubmed: 25510515
JOR Spine. 2020 Jul 24;3(4):e1115
pubmed: 33392452
J Bone Joint Surg Am. 2007 Feb;89 Suppl 1:42-54
pubmed: 17272422
Spine Deform. 2021 Jan;9(1):141-147
pubmed: 32827085
Ann Transl Med. 2020 Jan;8(2):27
pubmed: 32055618

Auteurs

Daniel Farivar (D)

Cedars-Sinai Spine, 444 S San Vicente Blvd, Ste 901, Los Angeles, CA, 90048, USA.

Stefan Parent (S)

Department of Surgery, Université de Montréal, Montreal, QC, Canada.

Firoz Miyanji (F)

Department of Orthopedics, BC Children's Hospital, Vancouver, BC, Canada.

Michael J Heffernan (MJ)

Children's Orthopaedic Center, Children's Hospital Los Angeles, Los Angeles, CA, USA.

Ron El-Hawary (R)

Orthopedics, Izaak Walton Killam (IWK) Health Centre, Halifax, Canada.

A Noelle Larson (AN)

Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.

Lindsay M Andras (LM)

Children's Orthopaedic Center, Children's Hospital Los Angeles, Los Angeles, CA, USA.

David L Skaggs (DL)

Cedars-Sinai Spine, 444 S San Vicente Blvd, Ste 901, Los Angeles, CA, 90048, USA. David.Skaggs@cshs.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH