Comparison of 2D and autostereoscopic 3D visualization during mixed reality simulation.
2D/3D Comparison
Autostereoscopy
Minimally invasive surgery
VR simulation
Journal
International journal of computer assisted radiology and surgery
ISSN: 1861-6429
Titre abrégé: Int J Comput Assist Radiol Surg
Pays: Germany
ID NLM: 101499225
Informations de publication
Date de publication:
Sep 2023
Sep 2023
Historique:
received:
11
01
2023
accepted:
15
03
2023
medline:
11
9
2023
pubmed:
31
3
2023
entrez:
30
3
2023
Statut:
ppublish
Résumé
In general minimally invasive surgical procedures, surgeons are tied to 2D visualization, leading to the loss of depth perception. This can lead to large mental load for the surgeons and may be responsible for the long learning curve. To restore the sense of depth, this study investigated the use and benefits of an autostereoscopic (3D) display during a simulated laparoscopic task. A mixed reality simulator was developed for comparing the performance of participants while using 2D and autostereoscopic 3D visualization. An electromagnetic sensor was mounted on a physical instrument, and its pose was mapped to the virtual instrument. The virtual scene was developed using Simulation Open Framework Architecture (SOFA). Finite element modeling was used to calculate interaction forces, which were then mapped to visual soft tissue deformation. Ten non-expert participants completed a virtual laparoscopic task, where the subjects were asked to contact eighteen target areas distributed on the surface of the vagina, both in 2D and 3D. Results showed an improvement with 3D vision in task completion time (-16%), total traveled distance (-25%) and errors made (-14%). There was no difference in the average contact forces between the vagina and the instrument. Only the difference in time and forces were shown to be statistically significant. Overall, autostereoscopic 3D showed superiority over conventional 2D visualization. The traveled trajectory increased in 2D as the instrument was retracted more between the targets to avoid contact. The 2D and 3D deformation upon contact seems not to contribute differently to force perception. However, the participants only had visual feedback, but no haptic feedback. Therefore, it could be interesting to include haptic feedback in a future study.
Identifiants
pubmed: 36995512
doi: 10.1007/s11548-023-02876-4
pii: 10.1007/s11548-023-02876-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1679-1686Subventions
Organisme : Agentschap Innoveren en Ondernemen
ID : HBC.2020.2246
Informations de copyright
© 2023. CARS.
Références
Ganatra AM, Rozet F, Sanchez-Salas R, Barret E, Galiano M, Cathelineau X, Vallancien G (2009) The current status of laparoscopic Sacrocolpopexy: a review. Eur Urol 55(5):1089–1105
doi: 10.1016/j.eururo.2009.01.048
pubmed: 19201521
Alleblas CCJ, de Man AM, van den Haak L, Vierhout ME, Jansen FW, Nieboer TE (2017) Prevalence of Musculoskeletal disorders among surgeons performing minimally invasive surgery. Ann Surg 266(6):905–920. https://doi.org/10.1097/SLA.0000000000002223
doi: 10.1097/SLA.0000000000002223
pubmed: 28306646
Hamad GG, Curet M (2010) Minimally invasive surgery. Am J Surg 199(2):263–265. https://doi.org/10.1016/J.AMJSURG.2009.05.008
doi: 10.1016/J.AMJSURG.2009.05.008
pubmed: 20113703
Park A, Lee G, Seagull FJ, Meenaghan N, Dexter D (2010) Patients benefit while surgeons suffer: an impending epidemic. J Am Coll Surg 210(3):306–313. https://doi.org/10.1016/J.JAMCOLLSURG.2009.10.017
doi: 10.1016/J.JAMCOLLSURG.2009.10.017
pubmed: 20193893
Roh HF, Nam SH, Kim JM (2018) Robot-assisted laparoscopic surgery versus conventional laparoscopic surgery in randomized controlled trials: a systematic review and meta-analysis. PLoS ONE 13(1):1–12. https://doi.org/10.1371/journal.pone.0191628
doi: 10.1371/journal.pone.0191628
Gómez E, Carrasco-Valiente J, Valero-Rosa J, Campos Hernández JP, Anglada-Curado F, Carazo-Carazo J, Font-Ugalde P, Tapia MJ (2014) Impact of 3d vision on mental workload and laparoscopic performance in inexperienced subjects. Acta Urol Espanol. https://doi.org/10.1016/j.acuro.2014.09.008
doi: 10.1016/j.acuro.2014.09.008
Tanagho Y, Andriole G, Paradis A, Madison K, Sandhu G, Varela E, Benway B (2012) 2d versus 3d visualization: impact on laparoscopic proficiency using the fundamentals of laparoscopic surgery skill set. J Laparoendosc Adv Surg Tech Part A. https://doi.org/10.1089/lap.2012.0220
doi: 10.1089/lap.2012.0220
Sengül A, Barsi A, Ribeiro D, Bleuler H (2013) Role of holographic displays and stereovision displays in patient safety and robotic surgery. Adv Intell Syst Comput 194:143–154. https://doi.org/10.1007/978-3-642-33932-5-14
doi: 10.1007/978-3-642-33932-5-14
Jourdan I, Dutson E, Garcia A, Vleugels T, Leroy J, Mutter D, Marescaux J (2004) Stereoscopic vision provides a significant advantage for precision robotic laparoscopy. Br J Surg 91:879–85. https://doi.org/10.1002/bjs.4549
Bergen P, Kunert W, Bessell J, Buess G (1998) Comparative study of two-dimensional and three-dimensional vision systems for minimally invasive surgery. Surg Endosc 12:948–54. https://doi.org/10.1007/s004649900754
Taffinder N, Smith S, Huber J, Russell R, Darzi A (1999) The effect of a second-generation 3d endoscope on the laparoscopic precision of novices and experienced surgeons. Surg Endosc 13:1087–92. https://doi.org/10.1007/s004649901179
doi: 10.1007/s004649901179
pubmed: 10556444
Tevaearai Stahel H, Mueller X, Segesser L (2000) 3-D vision improves performance in a pelvic trainer. Endoscopy 32:464–8. https://doi.org/10.1055/s-2000-643
doi: 10.1055/s-2000-643
Kong S-H, Oh B-M, Yoon H, Ahn H, Lee H-J, Chung S, Shiraishi N, Kitano S, Yang H-K (2009) Comparison of two- and three-dimensional camera systems in laparoscopic performance: a novel 3D system with one camera. Surg Endosc 24:1132–43. https://doi.org/10.1007/s00464-009-0740-8
doi: 10.1007/s00464-009-0740-8
pubmed: 19911222
Silvestri M, Simi M, Cavallotti C, Vatteroni M, Ferrari V, Freschi C, Valdastri P, Menciassi A, Dario P (2011) Autostereoscopic three-dimensional viewer evaluation through comparison with conventional interfaces in laparoscopic surgery. Surg Innov 18(3):223–230. https://doi.org/10.1177/1553350611411491 . (PMID: 21742655)
doi: 10.1177/1553350611411491
pubmed: 21742655
Urey H, Chellappan K, Erden E, Surman P (2011) State of the art in stereoscopic and autostereoscopic displays. In: Proceedings of the IEEE. https://doi.org/10.1109/JPROC.2010.2098351
Nomura K, Kikuchi D, Kaise M, Iizuka T, Ochiai Y, Suzuki Y, Fukuma Y, Tanaka M, Okamoto Y, Yamashita S, Matsui A, Mitani T, Hoteya S (2019) Comparison of 3D endoscopy and conventional 2D endoscopy in gastric endoscopic submucosal dissection: an ex vivo animal study. Surg Endosc. https://doi.org/10.1007/s00464-019-06726-w
doi: 10.1007/s00464-019-06726-w
pubmed: 31620911
Thomsen MN, Lang RD (2004) An experimental comparison of 3-Dimensional and 2-Dimensional endoscopic systems in a model. Arthrosc J Arthrosc Relat Surg 20(4):419–423. https://doi.org/10.1016/j.arthro.2004.01.003
doi: 10.1016/j.arthro.2004.01.003
Guanà R, Ferrero L, Garofalo S, Cerrina A, Cussa D, Arezzo A, Schleef J (2017) Skills comparison in pediatric residents using a 2-Dimensional versus a 3-Dimensional high-definition camera in a pediatric laparoscopic simulator. J Surg Educ 74(4):644–649. https://doi.org/10.1016/J.JSURG.2016.12.002
doi: 10.1016/J.JSURG.2016.12.002
pubmed: 28039097
Romero-Loera S, Cárdenas-Lailson LE, De La Concha-Bermejillo F, Crisanto-Campos BA, Valenzuela-Salazar C, Moreno-Portillo M (2016) Skills comparison using a 2D vs 3D laparoscopic simulator. Cirugia Y Cirujanos 84(1):37–44. https://doi.org/10.1016/J.CIRCIR.2015.06.032
doi: 10.1016/J.CIRCIR.2015.06.032
pubmed: 26259739
Blavier A, Gaudissart Q, Cadière GB, Nyssen AS (2007) Comparison of learning curves and skill transfer between classical and robotic laparoscopy according to the viewing conditions: implications for training. Am J Surg 194(1):115–121. https://doi.org/10.1016/J.AMJSURG.2006.10.014
doi: 10.1016/J.AMJSURG.2006.10.014
pubmed: 17560922
De Smet J, Poliakov V, Niu K, Fornier J, Ahmad MA, Ourak M, Viktor V, Deprest J, Vander Poorten E ( 2019) Evaluating the Potential Benefit of Autostereoscopy in Laparoscopic Sacrocolpopexy through VR Simulation. In: 19th International conference on advanced robotics (ICAR), pp. 572– 577
Turner LC, Kantartzis K, Lowder JL, Shepherd JP (2014) The effect of age on complications in women undergoing minimally invasive sacral Colpopexy. Int Urogynecol J 25(9):1251–1256. https://doi.org/10.1007/s00192-014-2391-0
doi: 10.1007/s00192-014-2391-0
pubmed: 24797942
Subak LL, Waetjen LE, van den Eeden S, Thom DH, Vittinghoff E, Brown JS (2001) Cost of pelvic organ prolapse surgery in the United States. Obst Gynecol 98(4):646–651. https://doi.org/10.1016/S0029-7844(01)01472-7
SOFA. https://www.sofa-framework.org/ Accessed 2023-01-05
Omari EA, Varghese T, Kliewer MA, Harter J, Hartenbach EM (2015) Dynamic and quasi-static mechanical testing for characterization of the viscoelastic properties of human uterine tissue. J Biomech 48(10):1730–1736
doi: 10.1016/j.jbiomech.2015.05.013
pubmed: 26072212
pmcid: 4582656
Murray JW (2017) Building virtual reality with unity and steamvr. CRC Press, Boca Raton