Hybrid Value-Aware Transformer Architecture for Joint Learning from Longitudinal and Non-Longitudinal Clinical Data.
Journal
medRxiv : the preprint server for health sciences
Titre abrégé: medRxiv
Pays: United States
ID NLM: 101767986
Informations de publication
Date de publication:
14 Mar 2023
14 Mar 2023
Historique:
medline:
31
3
2023
entrez:
30
3
2023
pubmed:
31
3
2023
Statut:
epublish
Résumé
Transformer is the latest deep neural network (DNN) architecture for sequence data learning that has revolutionized the field of natural language processing. This success has motivated researchers to explore its application in the healthcare domain. Despite the similarities between longitudinal clinical data and natural language data, clinical data presents unique complexities that make adapting Transformer to this domain challenging. To address this issue, we have designed a new Transformer-based DNN architecture, referred to as Hybrid Value-Aware Transformer (HVAT), which can jointly learn from longitudinal and non-longitudinal clinical data. HVAT is unique in the ability to learn from the numerical values associated with clinical codes/concepts such as labs, and also the use of a flexible longitudinal data representation called clinical tokens. We trained a prototype HVAT model on a case-control dataset, achieving high performance in predicting Alzheimer’s disease and related dementias as the patient outcome. The result demonstrates the potential of HVAT for broader clinical data learning tasks.
Identifiants
pubmed: 36993767
doi: 10.1101/2023.03.09.23287046
pmc: PMC10055462
pii:
doi:
Types de publication
Preprint
Langues
eng
Subventions
Organisme : NIA NIH HHS
ID : R01 AG073474
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG069121
Pays : United States
Commentaires et corrections
Type : UpdateIn
Références
AMIA Jt Summits Transl Sci Proc. 2016 Jul 20;2016:213-20
pubmed: 27570673
AMIA Jt Summits Transl Sci Proc. 2016 Jul 20;2016:41-50
pubmed: 27570647
NPJ Digit Med. 2021 May 20;4(1):86
pubmed: 34017034
Alzheimers Dement. 2023 Mar 22;:
pubmed: 36946469
Biometrics. 1988 Jun;44(2):323-38
pubmed: 3291957
Sci Rep. 2020 Apr 28;10(1):7155
pubmed: 32346050
BMC Med Inform Decis Mak. 2019 Apr 9;19(Suppl 2):58
pubmed: 30961579