Wafer-scale integration of GaAs/AlGaAs core-shell nanowires on silicon by the single process of self-catalyzed molecular beam epitaxy.
Journal
Nanoscale advances
ISSN: 2516-0230
Titre abrégé: Nanoscale Adv
Pays: England
ID NLM: 101738708
Informations de publication
Date de publication:
14 Mar 2023
14 Mar 2023
Historique:
received:
25
11
2022
accepted:
23
01
2023
entrez:
17
3
2023
pubmed:
18
3
2023
medline:
18
3
2023
Statut:
epublish
Résumé
GaAs/AlGaAs core-shell nanowires, typically having 250 nm diameter and 6 μm length, were grown on 2-inch Si wafers by the single process of molecular beam epitaxy using constituent Ga-induced self-catalysed vapor-liquid-solid growth. The growth was carried out without specific pre-treatment such as film deposition, patterning, and etching. The outermost Al-rich AlGaAs shells form a native oxide surface protection layer, which provides efficient passivation with elongated carrier lifetime. The 2-inch Si substrate sample exhibits a dark-colored feature due to the light absorption of the nanowires where the reflectance in the visible wavelengths is less than 2%. Homogeneous and optically luminescent and adsorptive GaAs-related core-shell nanowires were prepared over the wafer, showing the prospect for large-volume III-V heterostructure devices available with this approach as complementary device technologies for integration with silicon.
Identifiants
pubmed: 36926567
doi: 10.1039/d2na00848c
pii: d2na00848c
pmc: PMC10012865
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1651-1663Informations de copyright
This journal is © The Royal Society of Chemistry.
Déclaration de conflit d'intérêts
The authors declare no competing interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
Chem Rev. 2019 Aug 14;119(15):9170-9220
pubmed: 31385696
Nature. 2016 Mar 17;531(7594):317-22
pubmed: 26983538
Chem Rev. 2019 Aug 14;119(15):8958-8971
pubmed: 30998006
Science. 1993 Apr 2;260(5104):40-6
pubmed: 17793532
Nat Commun. 2019 Jun 26;10(1):2793
pubmed: 31243278
Nature. 2002 Feb 7;415(6872):617-20
pubmed: 11832939
Nanotechnology. 2020 Dec 11;31(50):505608
pubmed: 32937605
Nano Lett. 2019 May 8;19(5):2793-2802
pubmed: 30676752
Nano Lett. 2013 Nov 13;13(11):5135-40
pubmed: 24127827
Nano Lett. 2013 Aug 14;13(8):3607-13
pubmed: 23898953
Nano Lett. 2014 Dec 10;14(12):7024-30
pubmed: 25347721
Chem Rev. 2010 Jan;110(1):527-46
pubmed: 19817361
Nat Nanotechnol. 2016 Dec;11(12):1071-1075
pubmed: 27618257
Sci Rep. 2012;2:349
pubmed: 22470842
Nanoscale. 2020 Oct 22;12(40):20849-20858
pubmed: 33043329
Nanotechnology. 2013 May 24;24(20):205603
pubmed: 23609489
Adv Mater. 2014 Apr 9;26(14):2137-84
pubmed: 24604701
Chem Rev. 2019 Aug 14;119(15):9074-9135
pubmed: 31361471
Nature. 2020 Apr;580(7802):205-209
pubmed: 32269353
Opt Express. 2012 Jul 2;20 Suppl 4:A441-51
pubmed: 22828613
Nano Lett. 2012 Sep 12;12(9):4484-9
pubmed: 22889241
Nature. 2012 Dec 6;492(7427):90-4
pubmed: 23201685
Nature. 2002 Nov 7;420(6911):57-61
pubmed: 12422212
Nature. 2012 Aug 9;488(7410):189-92
pubmed: 22854778