Bright and stable perovskite light-emitting diodes in the near-infrared range.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
03 2023
Historique:
received: 23 05 2022
accepted: 03 02 2023
medline: 31 3 2023
pubmed: 17 3 2023
entrez: 16 3 2023
Statut: ppublish

Résumé

Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)

Identifiants

pubmed: 36922588
doi: 10.1038/s41586-023-05792-4
pii: 10.1038/s41586-023-05792-4
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

830-835

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).
doi: 10.1038/nnano.2014.149 pubmed: 25086602
Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).
doi: 10.1038/s41586-021-03217-8 pubmed: 33658694
Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).
doi: 10.1038/s41566-018-0283-4
Kim, Y.-H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).
doi: 10.1038/s41566-020-00732-4
Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).
doi: 10.1038/s41586-018-0576-2 pubmed: 30305742
Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).
doi: 10.1038/s41566-019-0390-x
Zhao, B. et al. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3, 704–710 (2020).
doi: 10.1038/s41928-020-00487-4
Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).
doi: 10.1038/s41586-021-03997-z pubmed: 34819678
Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).
doi: 10.1038/s41566-022-01046-3
Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).
doi: 10.1038/s41566-018-0260-y
Chu, Z. et al. Perovskite light‐emitting diodes with external quantum efficiency exceeding 22% via small‐molecule passivation. Adv. Mater. 33, 2007169 (2021).
doi: 10.1002/adma.202007169
Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).
doi: 10.1038/nphoton.2016.269
Chen, J. et al. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photon. 15, 238–244 (2021).
doi: 10.1038/s41566-020-00743-1
Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).
doi: 10.1038/s41586-022-05304-w pubmed: 36352223
Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).
doi: 10.1038/s41586-018-0575-3 pubmed: 30305741
Lian, Y. et al. Ultralow-voltage operation of light-emitting diodes. Nat. Commun. 13, 3845 (2022).
doi: 10.1038/s41467-022-31478-y pubmed: 35788132 pmcid: 9253117
Santhanam, P., Gray, D. J. & Ram, R. J. Thermoelectrically pumped light-emitting diodes operating above unity efficiency. Phys. Rev. Lett. 108, 097403 (2012).
doi: 10.1103/PhysRevLett.108.097403 pubmed: 22463667
Anaya, M. et al. Best practices for measuring emerging light-emitting diode technologies. Nat. Photon. 13, 818–821 (2019).
doi: 10.1038/s41566-019-0543-y
Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).
doi: 10.1126/science.1104274 pubmed: 15681376 pmcid: 1201471
Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science 359, 679–684 (2018).
doi: 10.1126/science.aaq1144 pubmed: 29439241
Pan, Z., Lu, Y.-Y. & Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr
doi: 10.1038/nmat3173
Bao, C. et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat. Electron. 3, 156–164 (2020).
doi: 10.1038/s41928-020-0382-3 pubmed: 32226921 pmcid: 7100905
Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).
doi: 10.1021/jz5005285 pubmed: 26269988
Zhao, L. et al. Nanosecond‐pulsed perovskite light‐emitting diodes at high current density. Adv. Mater. 33, 2104867 (2021).
doi: 10.1002/adma.202104867
Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).
doi: 10.1038/nature13829 pubmed: 25363773
Jariwala, S. et al. Local crystal misorientation influences non-radiative recombination in halide perovskites. Joule 3, 3048–3060 (2019).
doi: 10.1016/j.joule.2019.09.001
Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).
doi: 10.1126/science.aay7044 pubmed: 31699938
Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).
doi: 10.1126/science.abc4417 pubmed: 33004518
Han, Q. et al. Single crystal formamidinium lead Iodide (FAPbI
doi: 10.1002/adma.201505002 pubmed: 26790006
Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).
doi: 10.1038/s41586-020-2184-1 pubmed: 32296189
Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).
doi: 10.1126/science.aaa5333
Draguta, S. et al. Spatially non-uniform trap state densities in solution-processed hybrid perovskite thin films. J. Phys. Chem. Lett. 7, 715–721 (2016).
doi: 10.1021/acs.jpclett.5b02888 pubmed: 26840877
Zhang, W. et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015).
doi: 10.1038/ncomms7142 pubmed: 25635571
Orri, J. F. et al. Using Using cathodoluminescence from continuous and pulsed-mode SEM to elucidate the nanostructure of hybrid halide perovskite materials. Microsc. Microanal. 28, 2006–2008 (2022).
doi: 10.1017/S1431927622007796
Wang, J. et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 27, 2311–2316 (2015).
doi: 10.1002/adma.201405217 pubmed: 25708283
Hu, J. et al. Aryl-perfluoroaryl interaction in two-dimensional organic–inorganic hybrid perovskites boosts stability and photovoltaic efficiency. Acs. Mater. Lett. 1, 171–176 (2019).
doi: 10.1021/acsmaterialslett.9b00102
Di, D. et al. High-performance light-emitting diodes based on carbene-metal-amides. Science 356, 159–163 (2017).
doi: 10.1126/science.aah4345 pubmed: 28360136
Mello, J. C., de, Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).
doi: 10.1002/adma.19970090308
Orri, J. F., Lähnemann, J., Prestat, E., Johnstone, D. N. & Tappy, N. LumiSpy/lumispy: release v0.1.2. Zenodo https://doi.org/10.5281/zenodo.5722508 (2021).
Cho, C. et al. Electrical pumping of perovskite diodes: toward stimulated emission. Adv. Sci. 8, 2101663 (2021).
doi: 10.1002/advs.202101663

Auteurs

Yuqi Sun (Y)

Cavendish Laboratory, University of Cambridge, Cambridge, UK.

Lishuang Ge (L)

Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China (USTC), Hefei, China.
CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, China.

Linjie Dai (L)

Cavendish Laboratory, University of Cambridge, Cambridge, UK.

Changsoon Cho (C)

Cavendish Laboratory, University of Cambridge, Cambridge, UK.

Jordi Ferrer Orri (J)

Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.

Kangyu Ji (K)

Cavendish Laboratory, University of Cambridge, Cambridge, UK.

Szymon J Zelewski (SJ)

Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland.

Yun Liu (Y)

Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Institute of High Performance Computing, Agency for Science Technology and Research, Singapore, Singapore.

Alessandro J Mirabelli (AJ)

Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.

Youcheng Zhang (Y)

Cavendish Laboratory, University of Cambridge, Cambridge, UK.

Jun-Yu Huang (JY)

Cavendish Laboratory, University of Cambridge, Cambridge, UK.

Yusong Wang (Y)

Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.

Ke Gong (K)

Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.

May Ching Lai (MC)

Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.

Lu Zhang (L)

Cavendish Laboratory, University of Cambridge, Cambridge, UK.

Dan Yang (D)

CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, China.

Jiudong Lin (J)

CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, China.

Elizabeth M Tennyson (EM)

Cavendish Laboratory, University of Cambridge, Cambridge, UK.

Caterina Ducati (C)

Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.

Samuel D Stranks (SD)

Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.

Lin-Song Cui (LS)

Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China (USTC), Hefei, China. lscui@ustc.edu.cn.
CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, China. lscui@ustc.edu.cn.

Neil C Greenham (NC)

Cavendish Laboratory, University of Cambridge, Cambridge, UK. ncg11@cam.ac.uk.

Classifications MeSH