Bright and stable perovskite light-emitting diodes in the near-infrared range.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
03 2023
03 2023
Historique:
received:
23
05
2022
accepted:
03
02
2023
medline:
31
3
2023
pubmed:
17
3
2023
entrez:
16
3
2023
Statut:
ppublish
Résumé
Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)
Identifiants
pubmed: 36922588
doi: 10.1038/s41586-023-05792-4
pii: 10.1038/s41586-023-05792-4
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
830-835Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).
doi: 10.1038/nnano.2014.149
pubmed: 25086602
Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).
doi: 10.1038/s41586-021-03217-8
pubmed: 33658694
Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).
doi: 10.1038/s41566-018-0283-4
Kim, Y.-H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).
doi: 10.1038/s41566-020-00732-4
Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).
doi: 10.1038/s41586-018-0576-2
pubmed: 30305742
Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).
doi: 10.1038/s41566-019-0390-x
Zhao, B. et al. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3, 704–710 (2020).
doi: 10.1038/s41928-020-00487-4
Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).
doi: 10.1038/s41586-021-03997-z
pubmed: 34819678
Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).
doi: 10.1038/s41566-022-01046-3
Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).
doi: 10.1038/s41566-018-0260-y
Chu, Z. et al. Perovskite light‐emitting diodes with external quantum efficiency exceeding 22% via small‐molecule passivation. Adv. Mater. 33, 2007169 (2021).
doi: 10.1002/adma.202007169
Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).
doi: 10.1038/nphoton.2016.269
Chen, J. et al. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photon. 15, 238–244 (2021).
doi: 10.1038/s41566-020-00743-1
Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).
doi: 10.1038/s41586-022-05304-w
pubmed: 36352223
Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).
doi: 10.1038/s41586-018-0575-3
pubmed: 30305741
Lian, Y. et al. Ultralow-voltage operation of light-emitting diodes. Nat. Commun. 13, 3845 (2022).
doi: 10.1038/s41467-022-31478-y
pubmed: 35788132
pmcid: 9253117
Santhanam, P., Gray, D. J. & Ram, R. J. Thermoelectrically pumped light-emitting diodes operating above unity efficiency. Phys. Rev. Lett. 108, 097403 (2012).
doi: 10.1103/PhysRevLett.108.097403
pubmed: 22463667
Anaya, M. et al. Best practices for measuring emerging light-emitting diode technologies. Nat. Photon. 13, 818–821 (2019).
doi: 10.1038/s41566-019-0543-y
Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).
doi: 10.1126/science.1104274
pubmed: 15681376
pmcid: 1201471
Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science 359, 679–684 (2018).
doi: 10.1126/science.aaq1144
pubmed: 29439241
Pan, Z., Lu, Y.-Y. & Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr
doi: 10.1038/nmat3173
Bao, C. et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat. Electron. 3, 156–164 (2020).
doi: 10.1038/s41928-020-0382-3
pubmed: 32226921
pmcid: 7100905
Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).
doi: 10.1021/jz5005285
pubmed: 26269988
Zhao, L. et al. Nanosecond‐pulsed perovskite light‐emitting diodes at high current density. Adv. Mater. 33, 2104867 (2021).
doi: 10.1002/adma.202104867
Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).
doi: 10.1038/nature13829
pubmed: 25363773
Jariwala, S. et al. Local crystal misorientation influences non-radiative recombination in halide perovskites. Joule 3, 3048–3060 (2019).
doi: 10.1016/j.joule.2019.09.001
Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).
doi: 10.1126/science.aay7044
pubmed: 31699938
Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).
doi: 10.1126/science.abc4417
pubmed: 33004518
Han, Q. et al. Single crystal formamidinium lead Iodide (FAPbI
doi: 10.1002/adma.201505002
pubmed: 26790006
Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).
doi: 10.1038/s41586-020-2184-1
pubmed: 32296189
Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).
doi: 10.1126/science.aaa5333
Draguta, S. et al. Spatially non-uniform trap state densities in solution-processed hybrid perovskite thin films. J. Phys. Chem. Lett. 7, 715–721 (2016).
doi: 10.1021/acs.jpclett.5b02888
pubmed: 26840877
Zhang, W. et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015).
doi: 10.1038/ncomms7142
pubmed: 25635571
Orri, J. F. et al. Using Using cathodoluminescence from continuous and pulsed-mode SEM to elucidate the nanostructure of hybrid halide perovskite materials. Microsc. Microanal. 28, 2006–2008 (2022).
doi: 10.1017/S1431927622007796
Wang, J. et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 27, 2311–2316 (2015).
doi: 10.1002/adma.201405217
pubmed: 25708283
Hu, J. et al. Aryl-perfluoroaryl interaction in two-dimensional organic–inorganic hybrid perovskites boosts stability and photovoltaic efficiency. Acs. Mater. Lett. 1, 171–176 (2019).
doi: 10.1021/acsmaterialslett.9b00102
Di, D. et al. High-performance light-emitting diodes based on carbene-metal-amides. Science 356, 159–163 (2017).
doi: 10.1126/science.aah4345
pubmed: 28360136
Mello, J. C., de, Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).
doi: 10.1002/adma.19970090308
Orri, J. F., Lähnemann, J., Prestat, E., Johnstone, D. N. & Tappy, N. LumiSpy/lumispy: release v0.1.2. Zenodo https://doi.org/10.5281/zenodo.5722508 (2021).
Cho, C. et al. Electrical pumping of perovskite diodes: toward stimulated emission. Adv. Sci. 8, 2101663 (2021).
doi: 10.1002/advs.202101663