Simulation-based prediction of bone healing and treatment recommendations for lower leg fractures: Effects of motion, weight-bearing and fibular mechanics.
biomechanics
fibula
finite element analysis
gait analysis
lower leg injury
motion
prognosis of bone healing
tibial fracture
Journal
Frontiers in bioengineering and biotechnology
ISSN: 2296-4185
Titre abrégé: Front Bioeng Biotechnol
Pays: Switzerland
ID NLM: 101632513
Informations de publication
Date de publication:
2023
2023
Historique:
received:
12
10
2022
accepted:
10
02
2023
entrez:
9
3
2023
pubmed:
10
3
2023
medline:
10
3
2023
Statut:
epublish
Résumé
Despite recent experimental and clinical progress in the treatment of tibial and fibular fractures, in clinical practice rates of delayed bone healing and non-union remain high. The aim of this study was to simulate and compare different mechanical conditions after lower leg fractures to assess the effects of postoperative motion, weight-bearing restrictions and fibular mechanics on the strain distribution and the clinical course. Based on the computed tomography (CT) data set of a real clinical case with a distal diaphyseal tibial fracture, a proximal and a distal fibular fracture, finite element simulations were run. Early postoperative motion data, recorded
Identifiants
pubmed: 36890916
doi: 10.3389/fbioe.2023.1067845
pii: 1067845
pmc: PMC9986461
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1067845Informations de copyright
Copyright © 2023 Orth, Ganse, Andres, Wickert, Warmerdam, Müller, Diebels, Roland and Pohlemann.
Déclaration de conflit d'intérêts
TP is president elect and board member of the AO Foundation, Switzerland, and extended board member of the German Society of Orthopedic Trauma Surgery (DGU), the German Society of Orthopedic Surgery and Traumatology (DGOU), and the German Society of Surgery (DGCH). TP is also the speaker of the medical advisory board of the German Ministry of Defense. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Acta Biomed. 2019 Jan 15;89(4):558-563
pubmed: 30657124
Clin Biomech (Bristol, Avon). 2005 Nov;20(9):883-91
pubmed: 16009475
Int Orthop. 2017 Aug;41(8):1507-1512
pubmed: 28421239
Curr Osteoporos Rep. 2018 Dec;16(6):775-778
pubmed: 30393831
J Biomech. 2009 Feb 9;42(3):234-41
pubmed: 19118831
Can J Surg. 2008 Feb;51(1):45-50
pubmed: 18248705
J Biomech. 2013 Jun 21;46(10):1655-62
pubmed: 23680350
J Biomech. 1999 Mar;32(3):255-66
pubmed: 10093025
J Biomech. 1989;22(8-9):837-44
pubmed: 2613719
J Mech Behav Biomed Mater. 2022 Oct 4;136:105483
pubmed: 36302272
Injury. 2016 Aug;47(8):1777-82
pubmed: 27316448
Gait Posture. 2022 Jan;91:66-72
pubmed: 34653876
J Orthop Res. 2003 Jul;21(4):662-9
pubmed: 12798066
Med Eng Phys. 1998 Dec;20(10):735-40
pubmed: 10223642
J Biomech. 2005 Dec;38(12):2440-50
pubmed: 16214492
Clin Orthop Relat Res. 2009 Aug;467(8):1964-71
pubmed: 19242768
Proc Inst Mech Eng H. 2019 May;233(5):595-599
pubmed: 30894097
Proc Inst Mech Eng H. 2001;215(2):203-13
pubmed: 11382079
Ann Plast Surg. 2009 Mar;62(3):246-51
pubmed: 19240519
Med Eng Phys. 1995 Jul;17(5):347-55
pubmed: 7670694
Front Surg. 2021 Sep 29;8:749209
pubmed: 34660686
J Orthop Trauma. 2018 Jul;32(7):e263-e269
pubmed: 29664881
Osteoporos Int. 2017 Feb;28(2):633-641
pubmed: 27734100
J Biomech Eng. 2007 Jun;129(3):297-309
pubmed: 17536896
J Exp Orthop. 2016 Dec;3(1):36
pubmed: 27943224
J Orthop Trauma. 2007 Mar;21(3):172-7
pubmed: 17473753
Biomech Model Mechanobiol. 2020 Dec;19(6):2307-2322
pubmed: 32524288
Int J Environ Res Public Health. 2018 Dec 13;15(12):
pubmed: 30551632
PLoS One. 2014 Apr 14;9(4):e94525
pubmed: 24732724
J Biomech. 2015 Feb 5;48(3):456-64
pubmed: 25543279
Injury. 2014 Feb;45(2):408-11
pubmed: 24129327
Comput Methods Programs Biomed. 2021 Sep;208:106262
pubmed: 34260972
Angle Orthod. 2004 Feb;74(1):3-15
pubmed: 15038485
Comput Methods Biomech Biomed Engin. 2011;14(1):79-93
pubmed: 21086207