Development of a Versatile Protein Labeling Tool for Live-Cell Imaging Using Fluorescent β-Lactamase Inhibitors.


Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
24 04 2023
Historique:
received: 03 02 2023
medline: 18 4 2023
pubmed: 8 3 2023
entrez: 7 3 2023
Statut: ppublish

Résumé

To understand the function of protein in live cells, real-time monitoring of protein dynamics and sensing of their surrounding environment are important methods. Fluorescent labeling tools are thus needed that possess fast labeling kinetics, high efficiency, and long-term stability. We developed a versatile chemical protein-labeling tool based on fluorophore-conjugated diazabicyclooctane β-lactamase inhibitors (BLIs) and wild-type TEM-1 β-lactamase protein tag. The fluorescent probes efficiently formed a stable carbamoylated complex with β-lactamase, and the labeled proteins were visualized over a long period of time in live cells. Moreover, use of an α-fluorinated carboxylate ester-based BLI prodrug enabled the probe to permeate cell membranes and stably label intracellular proteins after unexpected spontaneous ester hydrolysis. Lastly, combining the labeling tool with a pH-activatable fluorescent probe allowed visual monitoring of lysosomal protein translocation during autophagy.

Identifiants

pubmed: 36880808
doi: 10.1002/anie.202301704
doi:

Substances chimiques

beta-Lactamase Inhibitors 0
Proteins 0
Fluorescent Dyes 0
Penicillins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202301704

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, R. Y. Tsien, Science 2006, 312, 217-224.
 
C. Jing, V. W. Cornish, Acc. Chem. Res. 2011, 44, 784-792;
K. M. Marks, G. P. Nolan, Nat. Methods 2006, 3, 591-596.
 
G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Jr., Z.-G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, K. Johnsson, Nat. Chem. 2013, 5, 132-139;
J. B. Grimm, B. P. English, J. Chen, J. P. Slaughter, Z. Zhang, A. Revyakin, R. Patel, J. J. Macklin, D. Normanno, R. H. Singer, T. Lionnet, L. D. Lavis, Nat. Methods 2015, 12, 244-250;
R. S. Erdmann, S. W. Baguley, J. H. Richens, R. F. Wissner, Z. Xi, E. S. Allgeyer, S. Zhong, A. D. Thompson, N. Lowe, R. Butler, J. Bewersdorf, J. E. Rothman, D. St Johnston, A. Schepartz, D. Toomre, Cell Chem. Biol. 2019, 26, 584-592.
 
K. M. Dean, A. E. Palmer, Nat. Chem. Biol. 2014, 10, 512-523;
S. Mizukami, Y. Hori, K. Kikuchi, Acc. Chem. Res. 2014, 47, 247-256.
 
D. Asanuma, Y. Takaoka, S. Namiki, K. Takikawa, M. Kamiya, T. Nagano, Y. Urano, K. Hirose, Angew. Chem. Int. Ed. 2014, 53, 6085-6089;
Angew. Chem. 2014, 126, 6199-6203;
M. Martineau, A. Somasundaram, J. B. Grimm, T. D. Gruber, D. Choquet, J. W. Taraska, L. D. Lavis, D. Perrais, Nat. Commun. 2017, 8, 1412;
J. D. Fradgley, M. Starck, M. Laget, E. Bourrier, E. Dupuis, L. Lamarque, E. Trinquet, J. M. Zwier, D. Parker, Chem. Commun. 2021, 57, 5814-5817.
 
M. Bannwarth, I. R. Corrêa, Jr., M. Sztretye, S. Pouvreau, C. Fellay, A. Aebischer, L. Royer, E. Ríos, K. Johnsson, ACS Chem. Biol. 2009, 4, 179-190;
T. Kowada, T. Watanabe, Y. Amagai, R. Liu, M. Yamada, H. Takahashi, T. Matsui, K. Inaba, S. Mizukami, Cell Chem. Biol. 2020, 27, 1521-1531.
D. Srikun, A. E. Albers, C. I. Nam, A. T. Iavarone, C. J. Chang, J. Am. Chem. Soc. 2010, 132, 4455-4465.
G. V. Los, L. P. Encell, M. G. McDougall, D. D. Hartzell, N. Karassina, C. Zimprich, M. G. Wood, R. Learish, R. F. Ohana, M. Urh, D. Simpson, J. Mendez, K. Zimmerman, P. Otto, G. Vidugiris, J. Zhu, A. Darzins, D. H. Klaubert, R. F. Bulleit, K. V. Wood, ACS Chem. Biol. 2008, 3, 373-382.
A. Keppler, S. Gendreizig, T. Gronemeyer, H. Pick, H. Vogel, K. Johnsson, Nat. Biotechnol. 2003, 21, 86-89.
Y. Hori, H. Ueno, S. Mizukami, K. Kikuchi, J. Am. Chem. Soc. 2009, 131, 16610-16611.
S. Mizukami, S. Watanabe, Y. Hori, K. Kikuchi, J. Am. Chem. Soc. 2009, 131, 5016-5017.
G. Guillaume, M. Vanhove, J. Lamotte-Brasseur, P. Ledent, M. Jamin, B. Joris, J. M. Frère, J. Biol. Chem. 1997, 272, 5438-5444.
S. Mizukami, S. Watanabe, Y. Akimoto, K. Kikuchi, J. Am. Chem. Soc. 2012, 134, 1623-1629.
S. Watanabe, S. Mizukami, Y. Akimoto, Y. Hori, K. Kikuchi, Chem. Eur. J. 2011, 17, 8342-8349.
R. Sato, J. Kozuka, M. Ueda, R. Mishima, Y. Kumagai, A. Yoshimura, M. Minoshima, S. Mizukami, K. Kikuchi, J. Am. Chem. Soc. 2017, 139, 17397-17404.
T. Kowada, K. Arai, A. Yoshimura, T. Matsui, K. Kikuchi, S. Mizukami, Angew. Chem. Int. Ed. 2021, 60, 11378-11383;
Angew. Chem. 2021, 133, 11479-11484.
P. C. Van Krimpen, W. P. Van Bennekom, A. Bult, Pharm. Weekbl. Sci. Ed. 1987, 9, 1-23.
E. R. Lewis, K. M. Winterberg, A. L. Fink, Proc. Natl. Acad. Sci. USA 1997, 94, 443-447.
K. Coleman, Curr. Opin. Microbiol. 2011, 14, 550-555.
D. E. Ehmann, H. Jahić, P. L. Ross, R.-F. Gu, J. Hu, G. Kern, G. K. Walkup, S. L. Fisher, Proc. Natl. Acad. Sci. USA 2012, 109, 11663-11668.
A. Bonnefoy, C. Dupuis-Hamelin, V. Steier, C. Delachaume, C. Seys, T. Stachyra, M. Fairley, M. Guitton, M. Lampilas, J. Antimicrob. Chemother. 2004, 54, 410-417.
T. A. Blizzard, H. Chen, S. Kim, J. Wu, R. Bodner, C. Gude, J. Imbriglio, K. Young, Y.-W. Park, A. Ogawa, S. Raghoobar, N. Hairston, R. E. Painter, D. Wisniewski, G. Scapin, P. Fitzgerald, N. Sharma, J. Lu, S. Ha, J. Hermes, M. L. Hammond, Bioorg. Med. Chem. Lett. 2014, 24, 780-785.
S. Watanabe, S. Mizukami, Y. Hori, K. Kikuchi, Bioconjugate Chem. 2010, 21, 2320-2326.
 
S. M. Pauff, S. C. Miller, Org. Lett. 2011, 13, 6196-6199;
A. Choi, S. C. Miller, Org. Biomol. Chem. 2017, 15, 1346-1349.
T. F. Durand-Réville, J. Comita-Prevoir, J. Zhang, X. Wu, T. L. May-Dracka, J. A. C. Romero, F. Wu, A. Chen, A. B. Shapiro, N. M. Carter, S. M. McLeod, R. A. Giacobbe, J. C. Verheijen, S. D. Lahiri, M. D. Sacco, Y. Chen, J. P. O'Donnell, A. A. Miller, J. P. Mueller, R. A. Tommasi, J. Med. Chem. 2020, 63, 12511-12525.
G. Gorin, O. R. Pierce, E. T. McBee, J. Am. Chem. Soc. 1953, 75, 5622-5625.
S. H. Hilal, S. W. Karickhoff, L. A. Carreira, Quant. Struct.-Act. Relat. 1995, 14, 348-355.
S. J. Parker, J. Encarnación-Rosado, K. E. R. Hollinshead, D. M. Hollinshead, L. J. Ash, J. A. K. Rossi, E. Y. Lin, A. S. W. Sohn, M. R. Philips, D. R. Jones, A. C. Kimmelman, Nat. Commun. 2021, 12, 4905.
N. Kumar, Y. Hori, M. Nishiura, K. Kikuchi, Chem. Sci. 2020, 11, 3694-3701.
T. Inoue, W. D. Heo, J. S. Grimley, T. J. Wandless, T. Meyer, Nat. Methods 2005, 2, 415-418.
R. Rizzuto, M. Brini, P. Pizzo, M. Murgia, T. Pozzan, Curr. Biol. 1995, 5, 635-642.
E. T. W. Bampton, C. G. Goemans, D. Niranjan, N. Mizushima, A. M. Tolkovsky, Autophagy 2005, 1, 23-36.
H. Iwashita, S. Torii, N. Nagahora, M. Ishiyama, K. Shioji, K. Sasamoto, S. Shimizu, K. Okuma, ACS Chem. Biol. 2017, 12, 2546-2551.
S. Barth, D. Glick, K. F. Macleod, J. Pathol. 2010, 221, 117-124.
M. Minoshima, J. Kikuta, Y. Omori, S. Seno, R. Suehara, H. Maeda, H. Matsuda, M. Ishii, K. Kikuchi, ACS Cent. Sci. 2019, 5, 1059-1066.
S. R. Yoshii, N. Mizushima, Int. J. Mol. Sci. 2017, 18, 1865.
H. Katayama, T. Kogure, N. Mizushima, T. Yoshimori, A. Miyawaki, Chem. Biol. 2011, 18, 1042-1052.
I. A. Ciechomska, A. M. Tolkovsky, Autophagy 2007, 3, 586-590.
 
X. Charpentier, E. Oswald, J. Bacteriol. 2004, 186, 5486-5495;
E. Raz, G. Zlokarnik, R. Y. Tsien, W. Driever, Dev. Biol. 1998, 203, 290-294.
 
W. Gao, B. Xing, R. Y. Tsien, J. Rao, J. Am. Chem. Soc. 2003, 125, 11146-11147;
Y. Kong, H. Yao, H. Ren, S. Subbian, S. L. Cirillo, J. C. Sacchettini, J. Rao, J. D. Cirillo, Proc. Natl. Acad. Sci. USA 2010, 107, 12239-12244;
Y. Chen, M. Xu, W. Xu, H. Song, L. Hu, S. Xue, S. Zhang, X. Qian, H. Xie, Chem. Commun. 2019, 55, 9919-9922.

Auteurs

Masafumi Minoshima (M)

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 5650871, Japan.
JST, PRESTO, 2-1, Yamadaoka, Suita, Osaka, 5650871, Japan.

Taro Umeno (T)

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 5650871, Japan.

Kohei Kadooka (K)

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 5650871, Japan.

Margaux Roux (M)

Department of Chemistry, École normale supérieure de Lyon, 15 parvis René Descartes, 69342, Lyon, France.

Namiko Yamada (N)

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 5650871, Japan.

Kazuya Kikuchi (K)

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 5650871, Japan.
Immunology Frontier Research Center (IFReC), Osaka University, 2-1, Yamadaoka, Suita, Osaka, 5650871, Japan.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning

Molecular probes for tracking lipid droplet membrane dynamics.

Lingxiu Kong, Qingjie Bai, Cuicui Li et al.
1.00
Lipid Droplets Molecular Probes Humans Membrane Proteins Animals
Humans Computational Biology ROC Curve Algorithms Proteins

Strain learning in protein-based mechanical metamaterials.

Naroa Sadaba, Eva Sanchez-Rexach, Curt Waltmann et al.
1.00
Serum Albumin, Bovine Stress, Mechanical Animals Polymers Materials Testing

Classifications MeSH