Citizen Science Improves the Known and Potential Distribution of a Strong Wetland Invader: Implications for Niche Modeling and Invasion Management.
Citizen science
Invaded wetlands
Invasive species detection
Invasive species management
MaxEnt
Journal
Environmental management
ISSN: 1432-1009
Titre abrégé: Environ Manage
Pays: United States
ID NLM: 7703893
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
received:
16
12
2022
accepted:
19
02
2023
medline:
16
5
2023
pubmed:
4
3
2023
entrez:
3
3
2023
Statut:
ppublish
Résumé
Invasive alien species are one of the main causes of biodiversity loss and ecosystem alteration. Obtaining up-to-date occurrence records and accurate invasion risk maps has become crucial to develop timely and effective management strategies. Unfortunately, gathering and validating distribution data can be labor-intensive and time-consuming, with different data sources unavoidably leading to biases in the results. In this study, we evaluated the performance of a tailored citizen science project compared with other data sources, in mapping the current and potential distribution of Iris pseudacorus, a strong invasive alien plant in Argentina. To do so, we used geographic information systems and ecological niche modeling with Maxent, and compared data from: i) a citizen science tailored project; ii) the Global Biodiversity Information Facility (GBIF); and iii) an exhaustive professional data collection (i.e. field samplings across Argentina, literature and collections review). Results suggest that the citizen science tailored project provided a larger and more diversified amount of data compared to the other sources. All data-sources showed good performance in the ecological niche models, however, data from the tailored citizen science project predicted a greater suitable area, including regions not yet reported. This allowed us to better identify critical and vulnerable areas, where management and prevention strategies are necessary. Professional data provided more reports in non-urban areas, whereas citizen science based data sources (i.e. GBIF and the citizen science project conducted in this study) reported more sites in urban areas, which indicates that different data-sources are complementary and there is a big potential in combining methods. We encourage the use of tailored citizen science campaigns to gather a more diverse amount of data, generating better knowledge about aquatic invasive species and helping decision-making in ecosystem management.
Identifiants
pubmed: 36867207
doi: 10.1007/s00267-023-01802-3
pii: 10.1007/s00267-023-01802-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1176-1187Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
[USDA-APHIS] United States Department of Agriculture - Animal and Plant Health Inspection Service (2013) Weed risk assessment for Iris pseudacorus L. (Iridaceae) - yellow flag iris. Version 1, p. 16, United States Department of Agriculture - Animal and Plant Health Inspection Service. https://www.aphis.usda.gov/plant_health/plant_pest_info/weeds/downloads/wra/Iris_pseudacorus_WRA.pdf
Ashcroft MB, Gollan JR, Batley M (2012) Combining citizen science, bioclimatic envelope models and observed habitat preferences to determine the distribution of an inconspicuous, recently detected introduced bee (Halictus smaragdulus Vachal Hymenoptera: Halictidae) in Australia. Biol Invasions 14(3):515–527. https://doi.org/10.1007/s10530-011-0092-x
doi: 10.1007/s10530-011-0092-x
Beck J, Boller M, Erhardt A, Schwanghart W (2014) Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol Inf 19:10–15. https://doi.org/10.1016/j.ecoinf.2013.11.002
doi: 10.1016/j.ecoinf.2013.11.002
Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood FF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5:180214. https://doi.org/10.1038/sdata.2018.214
doi: 10.1038/sdata.2018.214
Bergerot B (2022) The Citizen Science Paradox. Land 11(8):1151
doi: 10.3390/land11081151
Bonney R, Phillips TB, Ballard HL, Enck JW (2016) Can citizen science enhance public understanding of science. Public Underst Sci 25(1):2–16. https://doi.org/10.1177/0963662515607406
doi: 10.1177/0963662515607406
Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012
doi: 10.1016/j.ecolmodel.2013.12.012
Brown ED, Williams BK (2019) The potential for citizen science to produce reliable and useful information in ecology. Conserv Biol 33(3):561–569
doi: 10.1111/cobi.13223
Burkart R, Bárbaro NO, Sánchez RO, Gómez DA (1999) Eco-regiones de la Argentina. Administración de Parques Nacionales, Programa Desarrollo Institucional Ambiental, Buenos Aires, p 43
Cardoso C, Tsiamis K, Gervasini E, Schade S, Taucer F, Adriaens T, Quintas M (2017) Citizen science and open data: A model for invasive alien species in Europe. RIO 3:e14811. https://doi.org/10.3897/rio.3.e14811
doi: 10.3897/rio.3.e14811
Cody J (1961) Iris pseudacorus L. escaped from cultivation in Canada. Can Field Nat 75:139–142
Conrad C, Hilchey K (2011) A review of citizen science and community-based environmental monitoring: issues and opportunities. Environ Monit Assess 176(1):273–291. https://doi.org/10.1007/s10661-010-1582-5
doi: 10.1007/s10661-010-1582-5
Crall W, Newman J, Stohlgren J, Holfelder A, Graham J, Waller M (2011) Assessing citizen science data quality: an invasive species case study. Conserv Lett 4(6):433–442. https://doi.org/10.1111/j.1755-263X.2011.00196.x
doi: 10.1111/j.1755-263X.2011.00196.x
Crall AW, Jarnevich CS, Young NE, Panke BJ, Renz M, Stohlgren TJ (2015) Citizen science contributes to our knowledge of invasive plant species distributions. Biol Invasions 17(8):2415–2427. https://doi.org/10.1007/s10530-015-0885-4
doi: 10.1007/s10530-015-0885-4
Davis E, Caffrey JM, Coughlan NE, Dick JT, Lucy FE (2018) Communications, outreach and citizen science: spreading the word about invasive alien species. Manag Biol Invasions 9(4):415
doi: 10.3391/mbi.2018.9.4.14
Cesar de Sa N, Marchante H, Marchante E, Cabral JA, Honrado JP, Vicente JR (2019) Can citizen science data guide the surveillance of invasive plants? A model-based test with Acacia trees in Portugal. Biol Invasions 21(6):2127–2141
doi: 10.1007/s10530-019-01962-6
DiBattista JD, Shalders TC, Reader S, Hay A, Parkinson K, Williams RJ, McGrouther M (2022) A comprehensive analysis of all known fishes from Sydney Harbour. Mar Pollut Bull 185:114239. https://doi.org/10.1016/j.marpolbul.2022.114239
doi: 10.1016/j.marpolbul.2022.114239
Di Cola V, Broennimann O, Petitpierre B, Breiner FT, d’Amen M, Randin C, Guisan A (2017) ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40(6):774–787. https://doi.org/10.1111/ecog.02671
doi: 10.1111/ecog.02671
Di Tomaso M, Kyser GB (2016) Shoreline Drizzle applications for control of incipient patches of yellow flag iris (Iris pseudacorus). Invasion Plant Sci Manag 9:205–213. https://doi.org/10.1614/IPSM-D-16-00023.1
doi: 10.1614/IPSM-D-16-00023.1
Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
doi: 10.1146/annurev.ecolsys.110308.120159
Elith J, Kearney M, Phillips S (2010) The art of modeling range-shifting species. Methods Ecol Evol 1(4):330–342. https://doi.org/10.1111/j.2041210X.2010.00036
doi: 10.1111/j.2041210X.2010.00036
Encarnação J, Teodósio MA, Morais P (2021) Citizen science and biological invasions: A review. Front Environ Sci 8:303. https://doi.org/10.3389/fenvs.2020.602980
doi: 10.3389/fenvs.2020.602980
Feldman MJ, Imbeau L, Marchand P, Mazerolle M, Darveau M, Fenton N (2021) Trends and gaps in the use of citizen science derived data as input for species distribution models: a quantitative review. PLoS One 16(3):e0234587. https://doi.org/10.1371/journal.pone.0234587
doi: 10.1371/journal.pone.0234587
Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49. https://doi.org/10.1017/S0376892997000088
doi: 10.1017/S0376892997000088
Fick SE, Hijmans RJ (2017) WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315. https://doi.org/10.1002/joc.5086
doi: 10.1002/joc.5086
Graham EA, Henderson S, Schloss A (2011) Using mobile phones to engage citizen scientists in research. Eos Trans Am Geophys Union 92(38):313–315
doi: 10.1029/2011EO380002
Gardner RC, Barchiesi S, Beltrame C, Finlayson CM, Galewski T, Harrison I, Paganini M, Perennou C, Pritchard DE, Rosenqvist A, Walpole M (2015) State of the World’s Wetlands and their Services to People: A compilation of recent analyses. Ramsar Briefing Note no. 7. Ramsar Convention Secretariat, Gland, Switzerland
Gaskin JF, Pokorny ML, Mangold JM (2016) An unusual case of seed dispersal in an invasive aquatic yellow flag iris (Iris pseudacorus). Biol Invasions 18(7):2067–2075. https://doi.org/10.1007/s10530-016-1151-0
doi: 10.1007/s10530-016-1151-0
GBIF Backbone Taxonomy (2019) Iris pseudacorus L. in GBIF Secretariat Checklist dataset https://doi.org/10.15468/39omei Accessed via GBIF.org 10 Feb 2022
Gervazoni P, Sosa A, Franceschini C, Coetzee J, Faltlhauser A, Fuentes-Rodriguez D, Hill M (2020) The alien invasive yellow flag (Iris pseudacorus L.) in Argentinian wetlands: assessing geographical distribution through different data sources. Biol Invasions 22(11):3183–3193. https://doi.org/10.1007/s10530-020-02331-4
doi: 10.1007/s10530-020-02331-4
Gerwing TG, Thomson HM, Brouard-John EK, Kushneryk K, Davies MM, Lawn P, Nelson KR (2021) Observed dispersal of invasive yellow flag iris (Iris pseudacorus) through a saline marine environment and growth in a novel substrate, shell hash. Wetlands 41(1):1–6. https://doi.org/10.1007/s13157-021-01421-w
doi: 10.1007/s13157-021-01421-w
Gillard MB, Castillo JM, Mesgaran MB, Futrell C, Grewell BJ (2021) High aqueous salinity does not preclude germination of invasive Iris pseudacorus from estuarine populations. Ecosphere 12(5):e03486. https://doi.org/10.1002/ecs2.3486
doi: 10.1002/ecs2.3486
Grewell BJ, Gallego-Tévar B, Gillard MB, Futrell J, Reicholf R, Castillo M (2021) Salinity and inundation effects on Iris pseudacorus: implications for tidal wetland invasion with sea level rise. Plant Soil 466:275–291. https://doi.org/10.1007/s11104-021-04997-8
doi: 10.1007/s11104-021-04997-8
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
doi: 10.1111/j.1472-4642.2010.00725.x
Hayasaka D, Fujiwara S, Uchida T (2018) Impacts of invasive Iris pseudacorus L. (yellow flag) establishing in an abandoned urban pond on native semi-wetland vegetation. J Integr Agric 17(8):1881–1887. https://doi.org/10.1016/S2095-3119(17)61831-8
doi: 10.1016/S2095-3119(17)61831-8
Henn JJ, Anderson CB, Pastur GM (2016) Landscape-level impact and habitat factors associated with invasive beaver distribution in Tierra del Fuego. Biol Invasions 18(6):1679–1688. https://doi.org/10.1007/s10530-016-1110-9
doi: 10.1007/s10530-016-1110-9
Hijmans RJ, Williams E, Vennes C, Hijmans MRJ (2017) Package ‘geosphere’. Spherical trigonometry 1(7):1–45
Hill MP, Terblanche JS (2014) Niche overlap of congeneric invaders supports a single-species hypothesis and provides insight into future invasion risk: implications for global management of the Bactrocera dorsalis complex. PloS One 9(2):e90121. https://doi.org/10.1371/journal.pone.0090121
doi: 10.1371/journal.pone.0090121
Huertas Herrera A, Lencinas MV, Toro Manríquez M, Miller JA, Martínez Pastur G (2020) Mapping the status of the North American beaver invasion in the Tierra del Fuego archipelago. PloS One 15(4):e0232057. https://doi.org/10.1371/journal.pone.0232057
doi: 10.1371/journal.pone.0232057
Hussner A (2014) Long-term macrophyte mapping documents a continuous shift from native to non-native aquatic plant dominance in the thermally abnormal River Erft (North Rhine-Westphalia, Germany). Limnologica 48:39–45. https://doi.org/10.1016/j.limno.2014.05.003
doi: 10.1016/j.limno.2014.05.003
Jaca TP, Mkhize V (2015) Distribution of Iris pseudacorus (Linnaeus, 1753) in South Africa. BioInvasions Rec 4(4):249–253. https://doi.org/10.3391/bir.2015.4.4.03
doi: 10.3391/bir.2015.4.4.03
Jacobs J, Pokorny M, Mangold J, Graves-Medley M (2011) Biology, ecology and management of yellow flag iris (Iris pseudacorus L.). Montana State University Extension Publ. EB0203, Bozeman, MT.
Johnson BA, Mader AD, Dasgupta R, Kumar P (2020) Citizen science and invasive alien species: An analysis of citizen science initiatives using information and communications technology (ICT) to collect invasive alien species observations. Glob Ecol Conserv 21:e00812. https://doi.org/10.1016/j.gecco.2019.e00812
doi: 10.1016/j.gecco.2019.e00812
Johnston A, Hochachka W, Strimas-Mackey M, Gutierrez VR, Robinson O, Miller E, Auer1 T, Kelling ST, Fink D (2019). Best practices for making reliable inferences from citizen science data: case study using eBird to estimate species distributions. BioRxiv https://www.biorxiv.org/content/10.1101/574392v2
Kandus P, Minotti P, Malvárez AI (2008) Distribution of wetlands in Argentina estimated from soil charts. Acta Scientiarum Biol Sci 30(4):403–409. https://doi.org/10.4025/actascibiolsci.v30i4.5870
doi: 10.4025/actascibiolsci.v30i4.5870
Kullenberg C, Kasperowski D (2016) What is citizen science? A scientometric meta-analysis. PloS One 11(1):e0147152. https://doi.org/10.1371/journal.pone.0147152
doi: 10.1371/journal.pone.0147152
Kurtz D, Fedre J, Ligier D (2016) Guía de buenas prácticas agrícolas para el cultivo de arroz en corrientes. INTA. http://www.acpaarrozcorrientes.org.ar/Paginas/GUIA.BPA.ARROZ.CTES%20.2016.pdf . Accessed 26 July 2021
Marchante H, Morais MC, Gamela A, Marchante E (2017) Using a WebMapping platform to engage volunteers to collect data on invasive plants distribution. Trans GIS 21:238–252. https://doi.org/10.1111/tgis.12198
doi: 10.1111/tgis.12198
Martin LJ, Blossey B, Ellis E (2012) Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations. Front Ecol Environ 10:195–201
doi: 10.1890/110154
Masciadri S, Brugnoli E, Muniz P (2010) InBUy database of Invasive and Alien Species (IAS) in Uruguay: a useful tool to confront this threat to biodiversity. Biota Neotrop 10(4):205–213
doi: 10.1590/S1676-06032010000400026
Minuti G, Coetzee JA, Ngxande-Koza S, Hill MP, Stiers I (2021) Prospects for the biological control of Iris pseudacorus L.(Iridaceae). Biocontrol Sci Technol 31(3):314–335. https://doi.org/10.1080/09583157.2020.1853050
doi: 10.1080/09583157.2020.1853050
Mistch W, Bernal B, Hernández M (2015) Ecosystem services of wetlands. Int J Biodivers Sci Ecosyst Serv Manag 11(1):11–14. https://doi.org/10.1080/21513732.2015.1006250
doi: 10.1080/21513732.2015.1006250
Mittermeier R, Mittermeier C, Brooks TM, Pilgram JD, Konstant WR, da Fonseca GA, Kormos C (2003) Wilderness and biodiversity conservation. PNAS 100(18):10309–10313. https://doi.org/10.1073/pnas.1732458100
doi: 10.1073/pnas.1732458100
Mopper S, Wiens KC, Goranova GA (2016) Competition, salinity, and clonal growth in native and introduced irises. Am J Bot 103:1575–1581. https://doi.org/10.3732/ajb.1600075
doi: 10.3732/ajb.1600075
Ochocki BM, Miller TE (2017) Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat comm 8(1):1–8. https://doi.org/10.1038/ncomms143
doi: 10.1038/ncomms143
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: An open-source release of Maxent. Ecography 40(7):887–893. https://doi.org/10.1111/ecog.03049
doi: 10.1111/ecog.03049
Pocock MJ, Roy HE, Fox R, Ellis WN, Botham M (2017) Citizen science and invasive alien species: predicting the detection of the oak processionary moth Thaumetopoea processionea by moth recorders. Biol Conserv 208:146–154
doi: 10.1016/j.biocon.2016.04.010
Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Richardson DM (2020) Scientists’ warning on invasive alien species. Biol Rev 95(6):1511–1534. https://doi.org/10.1111/brv.12627
doi: 10.1111/brv.12627
Rahimi V, Grouh H, Solymani A, Bahermand N, Meftahizade H (2011) Assessment of cytological and morphological variation among Iranian native Iris species. Afr J Biotechnol 10(44):8805–8815. https://doi.org/10.5897/AJB10.2555
doi: 10.5897/AJB10.2555
Raven PH, Thomas JH (1970) Iris pseudacorus in western North America. Madrono 20(8):390–391. https://www.jstor.org/stable/41426003
Richmond JQ, Swift CC, Wake TA, Brehme CS, Preston KL, Kus BE, Fisher RN (2021) Impacts of a non-indigenous ecosystem engineer, the American beaver (Castor canadensis), in a biodiversity hotspot. Front Conserv Sci 2:752400
doi: 10.3389/fcosc.2021.752400
Robinson OJ, Ruiz‐Gutierrez V, Reynolds MD, Golet GH, Strimas‐Mackey M, Fink D (2020) Integrating citizen science data with expert surveys increases accuracy and spatial extent of species distribution models. Diversity Distrib 26(8):976–986
doi: 10.1111/ddi.13068
Rodriguez-Merino A, Garcia-Murillo P, Cirujano S, Fernandez-Zamudio R (2018) Predicting the risk of aquatic plant invasions in Europe: How climatic factors and anthropogenic activity influence potential species distributions. J Nat Conserv 45:58–71. https://doi.org/10.1016/j.jnc.2018.08.007
doi: 10.1016/j.jnc.2018.08.007
Sala OE et al. (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774. https://doi.org/10.1126/science.287.5459.1770
doi: 10.1126/science.287.5459.1770
Sieben EJ, Procheş Ş, Mashau AC, Moshobane MC (2022) The alignment of projects dealing with wetland restoration and alien control: A challenge for conservation management in South Africa. S Afr J Sci 118:1/2. https://doi.org/10.17159/sajs.2022/11540
doi: 10.17159/sajs.2022/11540
Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends ecol evol 28(1):58–66. https://doi.org/10.1016/j.tree.2012.07.013
doi: 10.1016/j.tree.2012.07.013
Sonntag E (2021) Overcoming adversity: promise of recovery of native plants in a temperate wetland community following removal of yellow flag Iris (Iris pseudacorus L.) using benthic barriers. Doctoral dissertation, Royal Roads University, Canada
Sosa AJ, Jiménez NL, Faltlhauser AC, Righetti T, Mc Kay F, Bruzzone OA, Fernández Souto A (2021) The educational community and its knowledge and perceptions of native and invasive alien species. Sci Rep 11(1):1–12. https://doi.org/10.1038/s41598-021-00683-y
doi: 10.1038/s41598-021-00683-y
Srivastava V, Lafond V, Griess VC (2019) Species distribution models (SDM): applications, benefits and challenges in invasive species management. CAB Rev 14(10):1079. https://doi.org/10.1079/PAVSNNR201914020
doi: 10.1079/PAVSNNR201914020
Strasser B, Baudry J, Mahr D, Sanchez G, Tancoigne E (2019) “Citizen Science”? Rethinking science and public participation. Sci Technol Stud 32:52–76. https://doi.org/10.23987/sts.60425
doi: 10.23987/sts.60425
Triezenberg HA, Knuth BA, Yuan YC, Dickinson JL (2012) Internet-based social networking and collective action models of citizen science. In: Citizen science: public participation in environmental research, pp. 214–225. https://doi.org/10.7591/9780801463952
Urbina-Cardona N, Blair ME, Londoño MC, Loyola R, Velásquez-Tibatá J, Morales-Devia H (2019) Species distribution modeling in Latin America: a 25-year retrospective review. Tropical Conserv Sci 12:1940082919854058. https://doi.org/10.1177/1940082919854058
doi: 10.1177/1940082919854058
Varela S, Anderson RP, Garcıa-Valdes R, Fernandez-Gonzalez F (2014) Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37:1084–1091. https://doi.org/10.1111/j.1600-0587.2013.00441.x
doi: 10.1111/j.1600-0587.2013.00441.x
VanDerWal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220(4):589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010
doi: 10.1016/j.ecolmodel.2008.11.010
Team RC (2019) R: a language and environment for statistical computing, version 3.0. 2. Vienna, Austria: R Foundation for Statistical Computing, 2013
RC Venette (ed.) (2015) Pest risk modelling and mapping for invasive alien species, 252 pp. CABI, Wallingford (UK)
Wilson JR, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24(3):136–144. https://doi.org/10.1016/j.tree.2008.10.007
doi: 10.1016/j.tree.2008.10.007
Zulian V, Miller DA, Ferraz G (2021) Integrating citizen‐science and planned‐survey data improves species distribution estimates. Diversity Distrib 27(12):2498–2509. https://doi.org/10.1111/ddi.13416
doi: 10.1111/ddi.13416