A flow cytometry-based protocol for syngenic isolation of neurovascular unit cells from mouse and human tissues.


Journal

Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307

Informations de publication

Date de publication:
05 2023
Historique:
received: 25 09 2022
accepted: 16 12 2022
medline: 12 5 2023
pubmed: 2 3 2023
entrez: 1 3 2023
Statut: ppublish

Résumé

The neurovascular unit (NVU), composed of endothelial cells, pericytes, juxtaposed astrocytes and microglia together with neurons, is essential for proper central nervous system functioning. The NVU critically regulates blood-brain barrier (BBB) function, which is impaired in several neurological diseases and is therefore a key therapeutic target. To understand the extent and cellular source of BBB dysfunction, simultaneous isolation and analysis of NVU cells is needed. Here, we describe a protocol for the EPAM-ia method, which is based on flow cytometry for simultaneous isolation and analysis of endothelial cells, pericytes, astrocytes and microglia. This method is based on differential processing of NVU cell types using enzymes, mechanical homogenization and filtration specific for each cell type followed by combining them for immunostaining and fluorescence-activated cell sorting. The gating strategy encompasses cell-type-specific and exclusion markers for contaminating cells to isolate the major NVU cell types. This protocol takes ~6 h for two sets of one or two animals. The isolation part requires experience in animal handling, fresh tissue processing and immunolabeling for flow cytometry. Sorted NVU cells can be used for downstream applications including transcriptomics, proteomics and cell culture. Multiple cell-type analyses using UpSet can then be applied to obtain robust targets from single or multiple NVU cell types in neurological diseases associated with BBB dysfunction. The EPAM-ia method is also amenable to isolation of several other cell types, including cancer cells and immune cells. This protocol is applicable to healthy and pathological tissue from mouse and human sources and to several cell types compared with similar protocols.

Identifiants

pubmed: 36859615
doi: 10.1038/s41596-023-00805-y
pii: 10.1038/s41596-023-00805-y
doi:

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1510-1542

Informations de copyright

© 2023. Springer Nature Limited.

Références

Liebner, S. et al. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol. 135, 311–336 (2018).
pubmed: 29411111 pmcid: 6781630 doi: 10.1007/s00401-018-1815-1
Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).
pubmed: 29377008 pmcid: 5829048 doi: 10.1038/nrneurol.2017.188
Banks, W. A. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15, 275–292 (2016).
pubmed: 26794270 doi: 10.1038/nrd.2015.21
Terstappen, G. C., Meyer, A. H., Bell, R. D. & Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 20, 362–383 (2021).
pubmed: 33649582 doi: 10.1038/s41573-021-00139-y
Janzer, R. C. & Raff, M. C. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 325, 253–257 (1987).
pubmed: 3543687 doi: 10.1038/325253a0
Abbott, N. J., Rönnbäck, L. & Hansson, E. Astrocyte–endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).
pubmed: 16371949 doi: 10.1038/nrn1824
Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).
pubmed: 20944625 pmcid: 3241506 doi: 10.1038/nature09513
Armulik, A. et al. Pericytes regulate the blood–brain barrier. Nature 468, 557–561 (2010).
pubmed: 20944627 doi: 10.1038/nature09522
da Fonseca, A. C. C. et al. The impact of microglial activation on blood–brain barrier in brain diseases. Front. Cell. Neurosci. 8, 362 (2014).
pubmed: 25404894 pmcid: 4217497 doi: 10.3389/fncel.2014.00362
Archie, S. R., Shoyaib, Al,A. & Cucullo, L. Blood–brain barrier dysfunction in CNS disorders and putative therapeutic targets: an overview. Pharmaceutics 13, 1779 (2021).
pubmed: 34834200 pmcid: 8622070 doi: 10.3390/pharmaceutics13111779
Phoenix, T. N. et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29, 508–522 (2016).
pubmed: 27050100 pmcid: 4829447 doi: 10.1016/j.ccell.2016.03.002
Cucullo, L. et al. Development of a humanized in vitro blood–brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia 48, 505–516 (2007).
pubmed: 17326793 doi: 10.1111/j.1528-1167.2006.00960.x
Lee, Y.-K., Uchida, H., Smith, H., Ito, A. & Sanchez, T. The isolation and molecular characterization of cerebral microvessels. Nat. Protoc. 14, 3059–3081 (2019).
pubmed: 31586162 doi: 10.1038/s41596-019-0212-0
Devraj, G. et al. HIF-1α is involved in blood–brain barrier dysfunction and paracellular migration of bacteria in pneumococcal meningitis. Acta Neuropathol. 140, 183–208 (2020).
pubmed: 32529267 pmcid: 7360668 doi: 10.1007/s00401-020-02174-2
Guerit, S. et al. Astrocyte-derived Wnt growth factors are required for endothelial blood-brain barrier maintenance. Prog. Neurobiol. 199, 101937 (2021).
Crouch, E. E. & Doetsch, F. FACS isolation of endothelial cells and pericytes from mouse brain microregions. Nat. Protoc. 13, 738–751 (2018).
pubmed: 29565899 doi: 10.1038/nprot.2017.158
Lyck, R. et al. Culture-induced changes in blood–brain barrier transcriptome: implications for amino-acid transporters in vivo. J. Cereb. Blood Flow. Metab. 29, 1491–1502 (2009).
pubmed: 19491922 doi: 10.1038/jcbfm.2009.72
Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).
Daneman, R. et al. The mouse blood–brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS ONE 5, e13741 (2010).
pubmed: 21060791 pmcid: 2966423 doi: 10.1371/journal.pone.0013741
Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).
pubmed: 25186741 pmcid: 4152602 doi: 10.1523/JNEUROSCI.1860-14.2014
He, L. et al. Analysis of the brain mural cell transcriptome. Sci. Rep. 6, 35108 (2016).
pubmed: 27725773 pmcid: 5057134 doi: 10.1038/srep35108
Winkler, E. A. et al. A single-cell atlas of the normal and malformed human brain vasculature. Science 375, eabi7377 (2022).
Batiuk, M. Y. et al. An immunoaffinity-based method for isolating ultrapure adult astrocytes based on ATP1B2 targeting by the ACSA-2 antibody. J. Biol. Chem. 292, 8874–8891 (2017).
pubmed: 28373281 pmcid: 5448122 doi: 10.1074/jbc.M116.765313
Kantzer, C. G. et al. Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia 65, 990–1004 (2017).
pubmed: 28317180 doi: 10.1002/glia.23140
Wylot, B., Konarzewska, K., Bugajski, L., Piwocka, K. & Zawadzka, M. Isolation of vascular endothelial cells from intact and injured murine brain cortex-technical issues and pitfalls in FACS analysis of the nervous tissue. Cytom. A 87, 908–920 (2015).
doi: 10.1002/cyto.a.22677
Gurnik, S. et al. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol. 131, 753–773 (2016).
pubmed: 26932603 pmcid: 4835530 doi: 10.1007/s00401-016-1551-3
Liebner, S. et al. Wnt/β-catenin signaling controls development of the blood–brain barrier. J. Cell Biol. 183, 409–417 (2008).
pubmed: 18955553 pmcid: 2575783 doi: 10.1083/jcb.200806024
Bennett, M. L. et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl Acad. Sci. USA 113, E1738–E1746 (2016).
pubmed: 26884166 pmcid: 4812770 doi: 10.1073/pnas.1525528113
Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).
pubmed: 26687838 doi: 10.1016/j.neuron.2015.11.013
Foo, L. C. Purification of rat and mouse astrocytes by immunopanning. Cold Spring Harb. Protoc. 2013, 421–432 (2013).
pubmed: 23637363 doi: 10.1101/pdb.err080101
Spitzer, D. et al. Profiling the neurovascular unit unveils detrimental effects of osteopontin on the blood–brain barrier in acute ischemic stroke. Acta Neuropathol. https://doi.org/10.1007/s00401-022-02452-1 (2022).
doi: 10.1007/s00401-022-02452-1 pubmed: 35752654 pmcid: 9288377
Srinivasan, K. et al. Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional responses. Nat. Commun. 7, 11295 (2016).
pubmed: 27097852 pmcid: 4844685 doi: 10.1038/ncomms11295
Sundstrøm, T. et al. Automated tracking of nanoparticle-labeled melanoma cells improves the predictive power of a brain metastasis model. Cancer Res. 73, 2445–2456 (2013).
pubmed: 23423977 doi: 10.1158/0008-5472.CAN-12-3514
Daphu, I. et al. In vitro treatment of melanoma brain metastasis by simultaneously targeting the MAPK and PI3K signaling pathways. Int. J. Mol. Sci. 15, 8773–8794 (2014).
pubmed: 24840574 pmcid: 4057758 doi: 10.3390/ijms15058773
Di Tacchio, M. et al. Tumor vessel normalization, immunostimulatory reprogramming, and improved survival in glioblastoma with combined inhibition of PD-1, angiopoietin-2, and VEGF. Cancer Immunol. Res. 7, 1910–1927 (2019).
pubmed: 31597643 doi: 10.1158/2326-6066.CIR-18-0865
Richardson, G. M., Lannigan, J. & Macara, I. G. Does FACS perturb gene expression? Cytom. A 87, 166–175 (2015).
doi: 10.1002/cyto.a.22608
Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).
pubmed: 26780511 pmcid: 4768346 doi: 10.1038/nn.4222
Jurga, A. M., Paleczna, M. & Kuter, K. Z. Overview of general and discriminating markers of differential microglia phenotypes. Front. Cell. Neurosci. 14, 198 (2020).
pubmed: 32848611 pmcid: 7424058 doi: 10.3389/fncel.2020.00198
Haage, V. et al. Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathol. Commun. 7, 20 (2019).
pubmed: 30764877 pmcid: 6376799 doi: 10.1186/s40478-019-0665-y
Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).
pubmed: 18171944 pmcid: 6671143 doi: 10.1523/JNEUROSCI.4178-07.2008
Zhou, L., Sohet, F. & Daneman, R. Purification and culture of central nervous system endothelial cells. Cold Spring Harb. Protoc. 2014, 44–46 (2014).
pubmed: 24371313
Navone, S. E. et al. Isolation and expansion of human and mouse brain microvascular endothelial cells. Nat. Protoc. 8, 1680–1693 (2013).
pubmed: 23928501 doi: 10.1038/nprot.2013.107
Sheikh, B. N. et al. Systematic identification of cell–cell communication networks in the developing brain. iScience 21, 273–287 (2019).
pubmed: 31677479 pmcid: 6838536 doi: 10.1016/j.isci.2019.10.026
Liu, L. & Shi, G.-P. CD31: beyond a marker for endothelial cells. Cardiovasc. Res. 94, 3–5 (2012).
pubmed: 22379038 doi: 10.1093/cvr/cvs108
Espina, V. et al. Laser-capture microdissection. Nat. Protoc. 1, 586–603 (2006).
pubmed: 17406286 doi: 10.1038/nprot.2006.85
Garrido-Gil, P., Fernandez-Rodríguez, P., Rodríguez-Pallares, J. & Labandeira-Garcia, J. L. Laser capture microdissection protocol for gene expression analysis in the brain. Histochem. Cell Biol. 148, 299–311 (2017).
pubmed: 28560490 doi: 10.1007/s00418-017-1585-1
Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).
pubmed: 27365449 doi: 10.1126/science.aaf2403
Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).
pubmed: 31501547 pmcid: 6765407 doi: 10.1038/s41592-019-0548-y
Brady, L. et al. Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nat. Commun. 12, 1426 (2021).
pubmed: 33658518 pmcid: 7930198 doi: 10.1038/s41467-021-21615-4
Devraj, K. et al. GLUT-1 glucose transporters in the blood–brain barrier: differential phosphorylation. J. Neurosci. Res. 89, 1913–1925 (2011).
pubmed: 21910135 doi: 10.1002/jnr.22738
Devraj, K. et al. BACE-1 is expressed in the blood–brain barrier endothelium and is upregulated in a murine model of Alzheimer’s disease. J. Cerebr. Blood Flow Metab. 36, 1281–1294 (2016).
Song, H. W. et al. Transcriptomic comparison of human and mouse brain microvessels. Sci. Rep. 10, 12358 (2020).
pubmed: 32704093 pmcid: 7378255 doi: 10.1038/s41598-020-69096-7
Leisegang, M. S. et al. Long noncoding RNA MANTIS facilitates endothelial angiogenic function. Circulation 136, 65–79 (2017).
pubmed: 28351900 pmcid: 5491227 doi: 10.1161/CIRCULATIONAHA.116.026991
Devraj, K., Guerit, S., Macas, J. & Reiss, Y. An in vivo blood–brain barrier permeability assay in mice using fluorescently labeled tracers. JoVE 132, e57038–e57038 (2018).
Lex, A. & Gehlenborg, N. Sets and intersections. Nat. Methods 11, 779 (2014).
doi: 10.1038/nmeth.3033
Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. UpSet: visualization of intersecting sets. IEEE Trans. Vis. Comput. Gr. 20, 1983–1992 (2014).
doi: 10.1109/TVCG.2014.2346248
Dubinski, D. et al. Controversial roles for dexamethasone in glioblastoma - Opportunities for novel vascular targeting therapies. J. Cereb. Blood Flow. Metab. 39, 1460–1468 (2019).
pubmed: 31238763 pmcid: 6681527 doi: 10.1177/0271678X19859847
Bernatz, S. et al. Impact of docetaxel on blood–brain barrier function and formation of breast cancer brain metastases. J. Exp. Clin. Cancer Res. 38, 434 (2019).
pubmed: 31665089 pmcid: 6819416 doi: 10.1186/s13046-019-1427-1

Auteurs

Daniel Spitzer (D)

Department of Neurology, Goethe University, Frankfurt, Germany.
Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.

Maryam I Khel (MI)

Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.

Tim Pütz (T)

Department of Neurology, Goethe University, Frankfurt, Germany.
Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.

Jenny Zinke (J)

Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.

Xiaoxiong Jia (X)

Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.

Kathleen Sommer (K)

Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.

Katharina Filipski (K)

Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.

Frits Thorsen (F)

The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway.

Thomas M Freiman (TM)

Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany.

Stefan Günther (S)

Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.

Karl H Plate (KH)

Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.
German Cancer Consortium (DKTK) Partner site Frankfurt/Mainz, Frankfurt, Germany.
Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany.
German Cancer Research Center (DKFZ), Heidelberg, Germany.

Patrick N Harter (PN)

Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.
German Cancer Consortium (DKTK) Partner site Frankfurt/Mainz, Frankfurt, Germany.
Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany.
German Cancer Research Center (DKFZ), Heidelberg, Germany.

Stefan Liebner (S)

Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.
Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany.

Yvonne Reiss (Y)

Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.
German Cancer Consortium (DKTK) Partner site Frankfurt/Mainz, Frankfurt, Germany.
Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany.
German Cancer Research Center (DKFZ), Heidelberg, Germany.

Mariangela Di Tacchio (M)

Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.

Sylvaine Guérit (S)

Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany.

Kavi Devraj (K)

Edinger Institute (Institute of Neurology), Goethe University, Frankfurt, Germany. Kavi.Devraj@kgu.de.
Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany. Kavi.Devraj@kgu.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH