Rapid adaptation of recombining populations on tunable fitness landscapes.
adaptation
epistasis
fitness landscapes
recombination
standing genetic variation
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
28 Feb 2023
28 Feb 2023
Historique:
revised:
28
01
2023
received:
14
11
2022
accepted:
01
02
2023
pubmed:
2
3
2023
medline:
2
3
2023
entrez:
1
3
2023
Statut:
aheadofprint
Résumé
How does standing genetic variation affect polygenic adaptation in recombining populations? Despite a large body of work in quantitative genetics, epistatic and weak additive fitness effects among simultaneously segregating genetic variants are difficult to capture experimentally or to predict theoretically. In this study, we simulated adaptation on fitness landscapes with tunable ruggedness driven by standing genetic variation in recombining populations. We confirmed that recombination hinders the movement of a population through a rugged fitness landscape. When surveying the effect of epistasis on the fixation of alleles, we found that the combined effects of high ruggedness and high recombination probabilities lead to preferential fixation of alleles that had a high initial frequency. This indicates that positive epistatic alleles escape from being broken down by recombination when they start at high frequency. We further extract direct selection coefficients and pairwise epistasis along the adaptive path. When taking the final fixed genotype as the reference genetic background, we observe that, along the adaptive path, beneficial direct selection appears stronger and pairwise epistasis weaker than in the underlying fitness landscape. Quantitatively, the ratio of epistasis and direct selection is smaller along the adaptive path (
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : H2020 European Research Council
ID : 804569
Organisme : Human Frontier Science Program
ID : RGY0081/2020
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : 315230/204838/1
Informations de copyright
© 2023 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Références
Aita, T., Uchiyama, H., Inaoka, T., Nakajima, M., Kokubo, T., & Husimi, Y. (2000). Analysis of a local fitness landscape with a model of the rough mt. Fuji-type landscape: Application to prolyl endopeptidase and thermolysin. Biopolymers: Original Research on Biomolecules, 54(1), 64-79.
Amado, A., Li, J., & Bank, C. (2023). Stun: Forward-time simulation on tunable fitness landscapes in recombining populations. bioRxiv. https://doi.org/10.1101/2023.02.15.528681
Ayala, F. J., & Campbell, C. A. (1974). Frequency-dependent selection. Annual Review of Ecology and Systematics, 5, 115-138.
Bank, C. (2022). Epistasis and adaptation on fitness landscapes. Annual Review of Ecology, Evolution, and Systematics, 53, 457-479.
Bank, C., Matuszewski, S., Hietpas, R. T., & Jensen, J. D. (2016). On the (un) predictability of a large intragenic fitness landscape. Proceedings of the National Academy of Sciences, 113(49), 14085-14090.
Barrett, R. D., & Schluter, D. (2008). Adaptation from standing genetic variation. Trends in Ecology & Evolution, 23(1), 38-44.
Blanquart, F., Achaz, G., Bataillon, T., & Tenaillon, O. (2014). Properties of selected mutations and genotypic landscapes under fisher's geometric model. Evolution, 68(12), 3537-3554.
Bomblies, K., & Peichel, C. L. (2022). Genetics of adaptation. Proceedings of the National Academy of Sciences, 119(30), e2122152119.
Campbell, R. F., McGrath, P. T., & Paaby, A. B. (2018). Analysis of epistasis in natural traits using model organisms. Trends in Genetics, 34(11), 883-898.
Crow, J. F. (2010). On epistasis: Why it is unimportant in polygenic directional selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1544), 1241-1244.
de Visser, J. A. G., Park, S.-C., & Krug, J. (2009). Exploring the effect of sex on empirical fitness landscapes. The American Naturalist, 174(S1), S15-S30.
Draghi, J. A., & Plotkin, J. B. (2013). Selection biases the prevalence and type of epistasis along adaptive trajectories. Evolution, 67(11), 3120-3131.
Du Plessis, L., Leventhal, G. E., & Bonhoeffer, S. (2016). How good are statistical models at approximating complex fitness landscapes? Molecular Biology and Evolution, 33(9), 2454-2468.
Fenster, C. B., Galloway, L. F., & Chao, L. (1997). Epistasis and its consequences for the evolution of natural populations. Trends in Ecology & Evolution, 12(7), 282-286.
Field, Y., Boyle, E. A., Telis, N., Gao, Z., Gaulton, K. J., Golan, D., Yengo, L., Rocheleau, G., Froguel, P., McCarthy, M. I., & Pritchard, J. K. (2016). Detection of human adaptation during the past 2000 years. Science, 354(6313), 760-764.
Fishman, L., & Sweigart, A. L. (2018). When two rights make a wrong: The evolutionary genetics of plant hybrid incompatibilities. Annual Review of Plant Biology, 69, 707-731.
Gillespie, J. H. (1984). Molecular evolution over the mutational landscape. Evolution, 38, 1116-1129.
Greene, D., & Crona, K. (2014). The changing geometry of a fitness landscape along an adaptive walk. PLoS Computational Biology, 10(5), e1003520.
Hill, W. G., & Robertson, A. (1966). The effect of linkage on limits to artificial selection. Genetics Research, 8(3), 269-294.
Hudson, R. R. (2015). A new proof of the expected frequency spectrum under the standard neutral model. PLoS One, 10(7), e0118087.
Kimura, M., & Ohta, T. (1969). The average number of generations until fixation of a mutant gene in a finite population. Genetics, 61(3), 763-771.
Lai, Y.-T., Yeung, C. K., Omland, K. E., Pang, E.-L., Hao, Y., Liao, B.-Y., Cao, H.-F., Zhang, B.-W., Yeh, C.-F., Hung, C.-M., Hung, H. Y., Yang, M. Y., Liang, W., Hsu, Y. C., Yao, C. T., Dong, L., Lin, K., & Li, S. H. (2019). Standing genetic variation as the predominant source for adaptation of a songbird. Proceedings of the National Academy of Sciences, 116(6), 2152-2157.
Marques, D. A., Meier, J. I., & Seehausen, O. (2019). A combinatorial view on speciation and adaptive radiation. Trends in Ecology & Evolution, 34(6), 531-544.
Neher, R. A., & Shraiman, B. I. (2009). Competition between recombination and epistasis can cause a transition from allele to genotype selection. Proceedings of the National Academy of Sciences, 106(16), 6866-6871.
Neher, R. A., Vucelja, M., Mezard, M., & Shraiman, B. I. (2013). Emergence of clones in sexual populations. Journal of Statistical Mechanics: Theory and Experiment, 2013(1), P01008.
Nowak, S., Neidhart, J., Szendro, I. G., & Krug, J. (2014). Multidimensional epistasis and the transitory advantage of sex. PLoS Computational Biology, 10(9), e1003836.
Orr, H. A. (2002). The population genetics of adaptation: The adaptation of dna sequences. Evolution, 56(7), 1317-1330.
Orr, H. A., & Unckless, R. L. (2014). The population genetics of evolutionary rescue. PLoS Genetics, 10(8), e1004551.
Pokusaeva, V. O., Usmanova, D. R., Putintseva, E. V., Espinar, L., Sarkisyan, K. S., Mishin, A. S., Bogatyreva, N. S., Ivankov, D. N., Akopyan, A. V., Avvakumov, S. Y., Povolotskaya, I. S., Filion, G. J., Carey, L. B., & Kondrashov, F. A. (2019). An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. PLoS Genetics, 15(4), e1008079.
Reddy, G., & Desai, M. M. (2021). Global epistasis emerges from a generic model of a complex trait. eLife, 10, e64740.
Roze, D., & Barton, N. H. (2006). The hill-robertson effect and the evolution of recombination. Genetics, 173(3), 1793-1811.
Stolyarova, A. V., Neretina, T. V., Zvyagina, E. A., Fedotova, A. V., Kondrashov, A. S., & Bazykin, G. A. (2022). Complex fitness landscape shapes variation in a hyperpolymorphic species. eLife, 11, e76073.
Szendro, I. G., Schenk, M. F., Franke, J., Krug, J., & De Visser, J. A. G. (2013). Quantitative analyses of empirical fitness landscapes. Journal of Statistical Mechanics: Theory and Experiment, 2013(1), P01005.
Turchin, M. C., Chiang, C. W., Palmer, C. D., Sankararaman, S., Reich, D., & Hirschhorn, J. N. (2012). Evidence of widespread selection on standing variation in Europe at height-associated SNPS. Nature Genetics, 44(9), 1015-1019.
Turelli, M., & Orr, H. A. (2000). Dominance, epistasis and the genetics of postzygotic isolation. Genetics, 154(4), 1663-1679.
Vahsen, M. L., Blum, M. J., Megonigal, J. P., Emrich, S. J., Holmquist, J. R., Stiller, B., Todd-Brown, K. E. O., & McLachlan, J. S. (2023). Rapid plant trait evolution can alter coastal wetland resilience to sea level rise. Science, 379(6630), 393-398. https://doi.org/10.1126/science.abq0595
Vaishnav, E. D., de Boer, C. G., Molinet, J., Yassour, M., Fan, L., Adiconis, X., Thompson, D. A., Levin, J. Z., Cubillos, F. A., & Regev, A. (2022). The evolution, evolvability and engineering of gene regulatory dna. Nature, 603(7901), 455-463.
Weissman, D. B., Feldman, M. W., & Fisher, D. S. (2010). The rate of fitness-valley crossing in sexual populations. Genetics, 186(4), 1389-1410.