Domain analysis of Drosophila Blimp-1 reveals the importance of its repression function and instability in determining pupation timing.


Journal

Genes to cells : devoted to molecular & cellular mechanisms
ISSN: 1365-2443
Titre abrégé: Genes Cells
Pays: England
ID NLM: 9607379

Informations de publication

Date de publication:
May 2023
Historique:
revised: 15 02 2023
received: 27 12 2022
accepted: 15 02 2023
medline: 8 5 2023
pubmed: 1 3 2023
entrez: 28 2 2023
Statut: ppublish

Résumé

The PRDM family transcription repressor Blimp-1 is present in almost all multicellular organisms and plays important roles in various developmental processes. This factor has several conserved motifs among different species, but the function of each motif is unclear. Drosophila Blimp-1 plays an important role in determining pupation timing by acting as an unstable transcriptional repressor of the βftz-f1 gene. Thus, Drosophila provides a good system for analyzing the molecular and biological functions of each region in Blimp-1. Various Blimp-1 mutants carrying deletions at the conserved motifs were induced under the control of the heat shock promoter in prepupae, and the expression patterns of βFTZ-F1 and Blimp-1 and pupation timing were observed. The results showed that the regions with strong and weak repressor functions exist within the proline-rich middle section of the factor and near the N-terminal conserved motif, respectively. Rapid degradation was supported by multiple regions that were mainly located in a large proline-rich region. Results revealed that pupation timing was affected by the repression ability and stability of Blimp-1. This suggests that both the repression function and instability of Blimp-1 are indispensable for the precise determination of pupation timing.

Identifiants

pubmed: 36852536
doi: 10.1111/gtc.13020
doi:

Substances chimiques

Blimp-1 protein, Drosophila 0
DNA-Binding Proteins 0
Drosophila Proteins 0
Repressor Proteins 0
nuclear hormone receptor FTZ-F1, Drosophila 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

338-347

Informations de copyright

© 2023 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

Références

Agawa, Y., Sarhan, M., Kageyama, Y., Akagi, K., Takai, M., Hashiyama, K., Wada, T., Handa, H., Iwamatsu, A., Hirose, S., & Ueda, H. (2007). Drosophila Blimp-1 is a transient transcriptional repressor that controls timing of the ecdysone-induced developmental pathway. Molecular and Cellular Biology, 27(24), 8739-8747.
Akagi, K., Sarhan, M., Sultan, A. R., Nishida, H., Koie, A., Nakayama, T., & Ueda, H. (2016). A biological timer in the fat body comprising Blimp-1, betaFtz-f1 and shade regulates pupation timing in Drosophila melanogaster. Development, 143(13), 2410-2416.
Akagi, K., & Ueda, H. (2011). Regulatory mechanisms of ecdysone-inducible Blimp-1 encoding a transcriptional repressor that is important for the prepupal development in Drosophila. Development, Growth & Differentiation, 53(5), 697-703.
Aly, H., Akagi, K., & Ueda, H. (2018). Proteasome activity determines pupation timing through the degradation speed of timer molecule Blimp-1. Development, Growth & Differentiation, 60(8), 502-508.
Ancelin, K., Lange, U. C., Hajkova, P., Schneider, R., Bannister, A. J., Kouzarides, T., & Surani, M. A. (2006). Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nature Cell Biology, 8(6), 623-630.
Angelin-Duclos, C., Cattoretti, G., Lin, K. I., & Calame, K. (2000). Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. Journal of Immunology, 165(10), 5462-5471. https://doi.org/10.4049/jimmunol.165.10.5462
Bikoff, E. K., Morgan, M. A., & Robertson, E. J. (2009). An expanding job description for Blimp-1/PRDM1. Current Opinion in Genetics & Development, 19(4), 379-385.
Bond, N. D., Nelliot, A., Bernardo, M. K., Ayerh, M. A., Gorski, K. A., Hoshizaki, D. K., & Woodard, C. T. (2011). ssFTZ-F1 and matrix metalloproteinase 2 are required for fat-body remodeling in Drosophila. Developmental Biology, 360(2), 286-296.
Broadus, J., McCabe, J. R., Endrizzi, B., Thummel, C. S., & Woodard, C. T. (1999). The Drosophila beta FTZ-F1 orphan nuclear receptor provides competence for stage-specific responses to the steroid hormone ecdysone. Molecular Cell, 3(2), 143-149.
Chang, D. H., Angelin-Duclos, C., & Calame, K. (2000). BLIMP-1: Trigger for differentiation of myeloid lineage. Nature Immunology, 1(2), 169-176.
Fumasoni, I., Meani, N., Rambaldi, D., Scafetta, G., Alcalay, M., & Ciccarelli, F. D. (2007). Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates. BMC Evolutionary Biology, 7, 187.
Gyory, I., Wu, J., Fejer, G., Seto, E., & Wright, K. L. (2004). PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nature Immunology, 5(3), 299-308.
Horn, M., Geisen, C., Cermak, L., Becker, B., Nakamura, S., Klein, C., Pagano, M., & Antebi, A. (2014). DRE-1/FBXO11-dependent degradation of BLMP-1/BLIMP-1 governs C. elegans developmental timing and maturation. Developmental Cell, 28(6), 697-710.
Jia, Q., Liu, S., Wen, D., Cheng, Y., Bendena, W. G., Wang, J., & Li, S. (2017). Juvenile hormone and 20-hydroxyecdysone coordinately control the developmental timing of matrix metalloproteinase-induced fat body cell dissociation. The Journal of Biological Chemistry, 292(52), 21504-21516.
John, S. A., & Garrett-Sinha, L. A. (2009). Blimp1: A conserved transcriptional repressor critical for differentiation of many tissues. Experimental Cell Research, 315(7), 1077-1084.
Kageyama, Y., Masuda, S., Hirose, S., & Ueda, H. (1997). Temporal regulation of the mid-prepupal gene FTZ-F1: DHR3 early late gene product is one of the plural positive regulators. Genes to Cells, 2(9), 559-569.
Kawasaki, H., Hirose, S., & Ueda, H. (2002). BetaFTZ-F1 dependent and independent activation of Edg78E, a pupal cuticle gene, during the early metamorphic period in Drosophila melanogaster. Development, Growth & Differentiation, 44(5), 419-425.
Keller, A. D., & Maniatis, T. (1991). Identification and characterization of a novel repressor of beta-interferon gene expression. Genes & Development, 5(5), 868-879.
Kouzarides, T. (2002). Histone methylation in transcriptional control. Current Opinion in Genetics & Development, 12(2), 198-209.
Lavorgna, G., Ueda, H., Clos, J., & Wu, C. (1991). FTZ-F1, a steroid hormone receptor-like protein implicated in the activation of fushi tarazu. Science, 252(5007), 848-851.
Lin, Y., Wong, K., & Calame, K. (1997). Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science, 276(5312), 596-599.
Marmorstein, R. (2003). Structure of SET domain proteins: A new twist on histone methylation. Trends in Biochemical Sciences, 28(2), 59-62.
Morgan, M. A., Mould, A. W., Li, L., Robertson, E. J., & Bikoff, E. K. (2012). Alternative splicing regulates Prdm1/Blimp-1 DNA binding activities and corepressor interactions. Molecular and Cellular Biology, 32(17), 3403-3413.
Murata, T., Kageyama, Y., Hirose, S., & Ueda, H. (1996). Regulation of the EDG84A gene by FTZ-F1 during metamorphosis in Drosophila melanogaster. Molecular and Cellular Biology, 16(11), 6509-6515.
Ng, T., Yu, F., & Roy, S. (2006). A homologue of the vertebrate SET domain and zinc finger protein Blimp-1 regulates terminal differentiation of the tracheal system in the Drosophila embryo. Development Genes and Evolution, 216(5), 243-252.
Ohinata, Y., Payer, B., O'Carroll, D., Ancelin, K., Ono, Y., Sano, M., Barton, S. C., Obukhanych, T., Nussenzweig, M., Tarakhovsky, A., Saitou, M., & Surani, M. A. (2005). Blimp1 is a critical determinant of the germ cell lineage in mice. Nature, 436(7048), 207-213.
Ohtani, M., & Miyadai, T. (2011). Functional analysis of fish BCL-6 and Blimp-1 in vitro: Transcriptional repressors for B-cell termin. Molecular Immunology, 48, 818-825.
Ozturk-Colak, A., Stephan-Otto Attolini, C., Casanova, J., & Araujo, S. J. (2018). Blimp-1 mediates tracheal lumen maturation in Drosophila melanogaster. Genetics, 210(2), 653-663.
Petryk, A., Warren, J. T., Marques, G., Jarcho, M. P., Gilbert, L. I., Kahler, J., Parvy, J. P., Li, Y., Dauphin-Villemant, C., & O'Connor, M. B. (2003). Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 13773-13778.
Rechsteiner, M., & Rogers, S. W. (1996). PEST sequences and regulation by proteolysis. Trends in Biochemical Sciences, 21(7), 267-271.
Ren, B., Chee, K. J., Kim, T. H., & Maniatis, T. (1999). PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes & Development, 13(1), 125-137.
Riddiford, L. M. (1993). Hormones and drosophila development. In M. Bate & A. Martinez-Arias (Eds.), The development of Drosophila melanogaster (Vol. 2, pp. 899-940). Cold Spring Harbor Laboratory Press.
Rogers, S., Wells, R., & Rechsteiner, M. (1986). Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis. Science, 234(4774), 364-368.
Su, S. T., Ying, H. Y., Chiu, Y. K., Lin, F. R., Chen, M. Y., & Lin, K. I. (2009). Involvement of histone demethylase LSD1 in Blimp-1-mediated gene repression during plasma cell differentiation. Molecular and Cellular Biology, 29(6), 1421-1431.
Thummel, C. S. (1996). Files on steroids-Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends in Genetics, 12(8), 306-310.
Thummel, C. S., Boulet, A. M., & Lipshitz, H. D. (1988). Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene, 74, 445-456.
Tunyaplin, C., Shapiro, M. A., & Calame, K. L. (2000). Characterization of the B lymphocyte-induced maturation protein-1 (Blimp-1) gene, mRNA isoforms and basal promoter. Nucleic Acids Research, 28(24), 4846-4855.
Turner, C. A., Jr., Mack, D. H., & Davis, M. M. (1994). Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell, 77(2), 297-306.
Ueda, H., Sonoda, S., Brown, J. L., Scott, M. P., & Wu, C. (1990). A sequence-specific DNA-binding protein that activates fushi tarazu segmentation gene expression. Genes & Development, 4(4), 624-635.
Vincent, S. D., Dunn, N. R., Sciammas, R., Shapiro-Shalef, M., Davis, M. M., Calame, K., Bikoff, E. K., & Robertson, E. J. (2005). The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development, 132(6), 1315-1325.
White, K. P., Hurban, P., Watanabe, T., & Hogness, D. S. (1997). Coordination of drosophila metamorphosis by two ecdysone-induced nuclear receptors. Science, 276(5309), 114-117.
Woodard, C. T., Baehrecke, E. H., & Thummel, C. S. (1994). A molecular mechanism for the stage specificity of the drosophila prepupal genetic response to ecdysone. Cell, 79(4), 607-615.
Wu, S. Y., Tong, X. L., Li, C. L., Ding, X., Zhang, Z. L., Fang, C. Y., Tan, D., Hu, H., Liu, H., & Dai, F. Y. (2019). BmBlimp-1 gene encoding a C2H2 zinc finger protein is required for wing development in the silkworm Bombyx mori. International Journal of Biological Sciences, 15(12), 2664-2675. https://doi.org/10.7150/ijbs.34743
Yamada, M., Murata, T., Hirose, S., Lavorgna, G., Suzuki, E., & Ueda, H. (2000). Temporally restricted expression of transcription factor betaFTZ-F1: Significance for embryogenesis, molting and metamorphosis in Drosophila melanogaster. Development, 127(23), 5083-5092.
Yu, J., Angelin-Duclos, C., Greenwood, J., Liao, J., & Calame, K. (2000). Transcriptional repression by blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase. Molecular and Cellular Biology, 20(7), 2592-2603.

Auteurs

Moustafa Sarhan (M)

The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.

Koichi Miyagawa (K)

The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.

Hitoshi Ueda (H)

The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
Department of Biology, Faculty of Science, Okayama University, Okayama, Japan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH