Chromosome Fissions and Fusions Act as Barriers to Gene Flow between Brenthis Fritillary Butterflies.
chromosome evolution
chromosome rearrangements
demographic inference
population genomics
speciation
Journal
Molecular biology and evolution
ISSN: 1537-1719
Titre abrégé: Mol Biol Evol
Pays: United States
ID NLM: 8501455
Informations de publication
Date de publication:
04 03 2023
04 03 2023
Historique:
pubmed:
23
2
2023
medline:
17
3
2023
entrez:
22
2
2023
Statut:
ppublish
Résumé
Chromosome rearrangements are thought to promote reproductive isolation between incipient species. However, it is unclear how often, and under what conditions, fission and fusion rearrangements act as barriers to gene flow. Here we investigate speciation between two largely sympatric fritillary butterflies, Brenthis daphne and Brenthis ino. We use a composite likelihood approach to infer the demographic history of these species from whole-genome sequence data. We then compare chromosome-level genome assemblies of individuals from each species and identify a total of nine chromosome fissions and fusions. Finally, we fit a demographic model where effective population sizes and effective migration rate vary across the genome, allowing us to quantify the effects of chromosome rearrangements on reproductive isolation. We show that chromosomes involved in rearrangements experienced less effective migration since the onset of species divergence and that genomic regions near rearrangement points have a further reduction in effective migration rate. Our results suggest that the evolution of multiple rearrangements in the B. daphne and B. ino populations, including alternative fusions of the same chromosomes, have resulted in a reduction in gene flow. Although fission and fusion of chromosomes are unlikely to be the only processes that have led to speciation between these butterflies, this study shows that these rearrangements can directly promote reproductive isolation and may be involved in speciation when karyotypes evolve quickly.
Identifiants
pubmed: 36810615
pii: 7050730
doi: 10.1093/molbev/msad043
pmc: PMC10015618
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Natural Environment Research Council
ID : NE/S007407/1
Organisme : Ministerio de Ciencia e Innovación
Organisme : Agencia Estatal de Investigación
ID : MCIN/AEI/10.13039/501100011033
Organisme : Royal Society University Research Fellowship
ID : URF/R1/180682
Organisme : European Research Council
ID : 757648
Pays : International
Organisme : Biotechnology and Biological Sciences Research Council (BBSRC)
ID : BB/N020146/1
Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
Déclaration de conflit d'intérêts
Conflicts of interest. The authors declare no conflicts of interest.
Références
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):E9610-E9619
pubmed: 30266792
Cytogenet Genome Res. 2022;162(5):262-272
pubmed: 36689925
Genetics. 1995 May;140(1):389-402
pubmed: 7635302
Heredity (Edinb). 2009 Jun;102(6):616-25
pubmed: 19240751
Heredity (Edinb). 1975 Apr;34 Part 2:265-9
pubmed: 1055712
Bioinformatics. 2015 Oct 1;31(19):3210-2
pubmed: 26059717
Evolution. 2006 Aug;60(8):1718-30
pubmed: 17017071
Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):7061-7066
pubmed: 28634295
BMC Evol Biol. 2016 Mar 22;16:63
pubmed: 27000803
Proc Natl Acad Sci U S A. 1977 Sep;74(9):3942-6
pubmed: 269445
Mol Ecol. 2018 Jun;27(11):2477-2497
pubmed: 29676042
G3 (Bethesda). 2022 May 30;12(6):
pubmed: 35348678
Mol Phylogenet Evol. 2013 Dec;69(3):469-78
pubmed: 23954756
Proc Natl Acad Sci U S A. 1986 Nov;83(21):8245-8
pubmed: 16593777
Genome Biol. 2018 Sep 25;19(1):145
pubmed: 30253810
Front Genet. 2017 Feb 10;8:10
pubmed: 28265284
Nature. 2005 Jul 21;436(7049):385-9
pubmed: 16034417
Science. 2017 Apr 7;356(6333):92-95
pubmed: 28336562
Evolution. 2022 Feb;76(2):332-345
pubmed: 34463346
Evolution. 2003 Mar;57(3):447-59
pubmed: 12703935
Cell Syst. 2016 Jul;3(1):95-8
pubmed: 27467249
Mol Ecol. 2018 Oct;27(19):3831-3851
pubmed: 29443419
Mol Ecol. 2021 Jul;30(14):3575-3589
pubmed: 33991396
Trends Ecol Evol. 2018 Jun;33(6):427-440
pubmed: 29731154
Insects. 2011 Mar 18;2(1):49-61
pubmed: 26467499
Cell Syst. 2018 Feb 28;6(2):256-258.e1
pubmed: 29428417
PLoS Biol. 2019 Feb 7;17(2):e2006288
pubmed: 30730876
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
Evolution. 2014 Oct;68(10):2747-56
pubmed: 24964074
Genetics. 2022 Mar 3;220(3):
pubmed: 34897427
Trends Ecol Evol. 2022 Aug;37(8):655-662
pubmed: 35484024
Genetics. 2016 Feb;202(2):775-86
pubmed: 26715666
Cytogenet Cell Genet. 1977;18(4):197-211
pubmed: 406119
Bioinformatics. 2018 Mar 1;34(5):867-868
pubmed: 29096012
NAR Genom Bioinform. 2021 May 03;3(2):lqab034
pubmed: 33987534
Science. 1968 Mar 8;159(3819):1065-70
pubmed: 5636340
J Hered. 2022 Jul 23;113(4):363-370
pubmed: 35134952
BMC Evol Biol. 2011 Apr 20;11:109
pubmed: 21507222
Mol Ecol. 2022 Feb;31(3):959-977
pubmed: 34779079
Sci Adv. 2019 Jun 12;5(6):eaau3648
pubmed: 31206013
Trends Ecol Evol. 2001 Jul 1;16(7):351-358
pubmed: 11403867
Evol Lett. 2017 Jun 14;1(3):138-154
pubmed: 30283645
Heredity (Edinb). 2000 Aug;85 ( Pt 2):147-56
pubmed: 11012717
Elife. 2022 Jun 15;11:
pubmed: 35703474
Proc Natl Acad Sci U S A. 1921 Aug;7(8):235-7
pubmed: 16576597
Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):12084-8
pubmed: 11593019
Mol Biol Evol. 2015 Jan;32(1):239-43
pubmed: 25371432
Bioinformatics. 2020 May 1;36(9):2896-2898
pubmed: 31971576
Am J Hum Genet. 2007 Sep;81(3):559-75
pubmed: 17701901
Nat Ecol Evol. 2023 Mar;7(3):424-439
pubmed: 36717742
PLoS Comput Biol. 2022 Sep 15;18(9):e1010532
pubmed: 36108047
Bioinformatics. 2018 Sep 15;34(18):3094-3100
pubmed: 29750242
Proc Natl Acad Sci U S A. 1948 Apr;34(4):137-41
pubmed: 16588794
Philos Trans R Soc Lond B Biol Sci. 2020 Aug 31;375(1806):20190539
pubmed: 32654638
Genetics. 2006 May;173(1):419-34
pubmed: 16204214
Bioinformatics. 2015 Jun 15;31(12):2032-4
pubmed: 25697820