Preclinical models of prostate cancer - modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo.


Journal

Nature reviews. Urology
ISSN: 1759-4820
Titre abrégé: Nat Rev Urol
Pays: England
ID NLM: 101500082

Informations de publication

Date de publication:
08 2023
Historique:
accepted: 20 01 2023
medline: 3 8 2023
pubmed: 15 2 2023
entrez: 14 2 2023
Statut: ppublish

Résumé

Prostate cancer is well known to be dependent on the androgen receptor (AR) for growth and survival. Thus, AR is the main pharmacological target to treat this disease. However, after an initially positive response to AR-targeting therapies, prostate cancer will eventually evolve to castration-resistant prostate cancer, which is often lethal. Tumour growth was initially thought to become androgen-independent following treatments; however, results from molecular studies have shown that most resistance mechanisms involve the reactivation of AR. Consequently, tumour cells become resistant to castration - the blockade of testicular androgens - and not independent of AR per se. However, confusion still remains on how to properly define preclinical models of prostate cancer, including cell lines. Most cell lines were isolated from patients for cell culture after evolution of the tumour to castration-resistant prostate cancer, but not all of these cell lines are described as castration resistant. Moreover, castration refers to the blockade of testosterone production by the testes; thus, even the concept of "castration" in vitro is questionable. To ensure maximal transfer of knowledge from scientific research to the clinic, understanding the limitations and advantages of preclinical models, as well as how these models recapitulate cancer cell androgen dependency and can be used to study castration resistance mechanisms, is essential.

Identifiants

pubmed: 36788359
doi: 10.1038/s41585-023-00726-1
pii: 10.1038/s41585-023-00726-1
doi:

Substances chimiques

Androgens 0
Receptors, Androgen 0
Testosterone 3XMK78S47O

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

480-493

Informations de copyright

© 2023. Springer Nature Limited.

Références

James, N., Lee, N. & Horton, R. Announcing the Lancet commission on prostate cancer comment. Lancet 397, 1865–1866 (2021).
pubmed: 33991476
Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).
pubmed: 33538338
Zoubeidi, A. & Ghosh, P. M. Celebrating the 80th anniversary of hormone ablation for prostate cancer. Endocr. Relat. Cancer 28, T1–T10 (2021).
pubmed: 34187942
Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).
pubmed: 26563462 pmcid: 4771416
Gonthier, K., Poluri, R. T. K. & Audet-Walsh, É. Functional genomic studies reveal the androgen receptor as a master regulator of cellular energy metabolism in prostate cancer. J. Steroid Biochem. Mol. Biol. 191, 105367 (2019).
pubmed: 31051242
Gonthier, K., Poluri, R. T. K., Weidmann, C., Tadros, M. & Audet-Walsh, É. Reprogramming of isocitrate dehydrogenases expression and activity by the androgen receptor in prostate cancer. Mol. Cancer Res. 17, 1699–1709 (2019).
pubmed: 31068457
Audet-Walsh, É. et al. Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate cancer. Genes Dev. 31, 1228–1242 (2017).
pubmed: 28724614 pmcid: 5558925
Cornford, P. et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on prostate cancer. Part II. 2020 update: treatment of relapsing and metastatic prostate cancer. Eur. Urol. 79, 263–282 (2021).
pubmed: 33039206
Wang, M. C. et al. Prostate antigen — a new potential marker for prostatic cancer. Prostate 2, 89–96 (1981).
pubmed: 6169079
Stamey, T. A. et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 909–916 (1987).
pubmed: 2442609
Stephan, C., Jung, K., Lein, M. & Diamandis, E. P. PSA and other tissue kallikreins for prostate cancer detection. Eur. J. Cancer 43, 1918–1926 (2007).
pubmed: 17689069
Kim, J. & Coetzee, G. A. Prostate specific antigen gene regulation by androgen receptor. J. Cell Biochem. 93, 233–241 (2004).
pubmed: 15368351
Wyatt, A. W. & Gleave, M. E. Targeting the adaptive molecular landscape of castration-resistant prostate cancer. EMBO Mol. Med. 7, 878–894 (2015).
pubmed: 25896606 pmcid: 4520654
Huang, J., Lin, B. & Li, B. Anti-androgen receptor therapies in prostate cancer: a brief update and perspective. Front. Oncol. 12, 865350 (2022).
pubmed: 35372068 pmcid: 8965587
Mottet, N. et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on prostate cancer-2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 79, 243–262 (2021).
pubmed: 33172724
Jamroze, A., Chatta, G. & Tang, D. G. Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Lett. 518, 1–9 (2021).
pubmed: 34118355 pmcid: 8355210
Sharifi, N. & Auchus, R. J. Steroid biosynthesis and prostate cancer. Steroids 77, 719–726 (2012).
pubmed: 22503713
Labrie, F., Dupont, A., Simard, J., Luuthe, V. & Belanger, A. Intracrinology — the basis for the rational design of endocrine therapy at all stages of prostate cancer. Eur. Urol. 24, 94–105 (1993).
pubmed: 8262132
Litwin, M. S. & Tan, H. J. The diagnosis and treatment of prostate cancer a review. J. Am. Med. Assoc. 317, 2532–2542 (2017).
Klotz, L. et al. Maximal testosterone suppression in the management of recurrent and metastatic prostate cancer. Can. Urol. Assoc. J. 11, 16–23 (2017).
pubmed: 28443139 pmcid: 5403681
Chi, K. et al. Treatment of mCRPC in the AR-axis-targeted therapy-resistant state. Ann. Oncol. 26, 2044–2056 (2015).
pubmed: 26101426
Harris, W. P., Mostaghel, E. A., Nelson, P. S. & Montgomery, B. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol. 6, 76–85 (2009).
pubmed: 19198621 pmcid: 2981403
Bolla, M. et al. Duration of androgen suppression in the treatment of prostate cancer. N. Engl. J. Med. 360, 2516–2527 (2009).
pubmed: 19516032
Gillessen, S. et al. Management of patients with advanced prostate cancer: the report of the advanced prostate cancer consensus conference APCCC 2017. Eur. Urol. 73, 178–211 (2018).
pubmed: 28655541
Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).
pubmed: 23228172
James, N. D. et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 377, 338–351 (2017).
pubmed: 28578639 pmcid: 5533216
Fizazi, K. et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 377, 352–360 (2017).
pubmed: 28578607
De Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).
pubmed: 21612468 pmcid: 3471149
Marchetti, P. M. & Barth, J. H. Clinical biochemistry of dihydrotestosterone. Ann. Clin. Biochem. 50, 95–107 (2013).
pubmed: 23431485
Massie, C. E. et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 30, 2719–2733 (2011).
pubmed: 21602788 pmcid: 3155295
Swinnen, J. V., Ulrix, W., Heyns, W. & Verhoeven, G. Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins. Proc. Natl Acad. Sci. USA 94, 12975–12980 (1997).
pubmed: 9371785 pmcid: 24248
Audet-Walsh, É. et al. Androgen-dependent repression of ERRγ reprograms metabolism in prostate cancer. Cancer Res. 77, 378–389 (2017).
pubmed: 27821488
Tennakoon, J. B. et al. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch. Oncogene 33, 5251–5261 (2014).
pubmed: 24186207
Bader, D. A. et al. Mitochondrial pyruvate import is a metabolic vulnerability in androgen receptor-driven prostate cancer. Nat. Metab. 1, 70–85 (2019).
pubmed: 31198906
Huggins, C. & Hodges, C. V. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1, 293–297 (1941).
Kluth, L. A. et al. The hypothalamic-pituitary-gonadal axis and prostate cancer: implications for androgen deprivation therapy. World J. Urol. 32, 669–676 (2014).
pubmed: 23999854
Hauger, R. L., Saelzler, U. G., Pagadala, M. S. & Panizzon, M. S. The role of testosterone, the androgen receptor, and hypothalamic-pituitary-gonadal axis in depression in ageing men. Rev. Endocr. Metab. Disord. https://doi.org/10.1007/s11154-022-09767-0 .
Labrie, F. Blockade of testicular and adrenal androgens in prostate cancer treatment. Nat. Rev. Urol. 8, 73–85 (2011).
pubmed: 21243019
Corti, M., Lorenzetti, S., Ubaldi, A., Zilli, R. & Marcoccia, D. Endocrine disruptors and prostate cancer. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23031216 (2022).
doi: 10.3390/ijms23031216 pubmed: 36361881 pmcid: 9654488
Robitaille, J. & Langlois, V. S. Consequences of steroid-5 α-reductase deficiency and inhibition in vertebrates. Gen. Comp. Endocrinol. https://doi.org/10.1016/j.ygcen.2020.113400 (2020).
doi: 10.1016/j.ygcen.2020.113400 pubmed: 31981690
Oettel, M. Testosterone metabolism, dose-response relationships and receptor polymorphisms: selected pharmacological/toxicological considerations on benefits versus risks of testosterone therapy in men. Aging Male 6, 230–256 (2003).
pubmed: 15006261
Frawley, L. S. & Neill, J. D. Biphasic effects of estrogen on gonadotropin-releasing hormone-induced luteinizing hormone release in monolayer cultures of rat and monkey pituitary cells. Endocrinology 114, 659–663 (1984).
pubmed: 6360672
Reis, L. O., Zani, E. L. & García-Perdomo, H. A. Estrogen therapy in patients with prostate cancer: a contemporary systematic review. Int. Urol. Nephrol. 50, 993–1003 (2018).
pubmed: 29600433
Schally, A. V. Legends in urology. Can. J. Urol. 20, 6889–6892 (2013).
pubmed: 24128824
Seidenfeld, J. et al. Single-therapy androgen suppression in men with advanced prostate cancer. Ann. Intern. Med. 132, 566–577 (2000).
pubmed: 10744594
Lacoste, D., Dubé, D., Trudel, C., Bélanger, A. & Labrie, F. Normal gonadal functions and fertility after 23 months of treatment of prepubertal male and female dogs with the GnRh agonist [D-Trp
pubmed: 2695507
Lacoste, D., Dubé, D., Bélanger, A. & Labrie, F. Effect of 2-week combination therapy with the luteinizing hormone-releasing hormone (LHRH) agonist [D-Trp
pubmed: 2693158
Labrie, F. Medical castration with LHRH agonists: 25 years later with major benefits achieved on survival in prostate cancer. J. Androl. 25, 305–313 (2004).
pubmed: 15064303
Betz, S. F., Zhu, Y.-F., Chen, C. & Struthers, R. S. Non-peptide gonadotropin-releasing hormone receptor antagonists. J. Med. Chem. 51, 3331–3348 (2008).
pubmed: 18419112
Rouleau, M. et al. Discordance between testosterone measurement methods in castrated prostate cancer patients. Endocr. Connect. 8, 132–140 (2019).
pubmed: 30673630 pmcid: 6376995
Klotz, L. et al. Testosterone suppression in the treatment of recurrent or metastatic prostate cancer — a Canadian consensus statement. Can. Urol. Assoc. J. 12, 30–37 (2018).
pubmed: 29680011
Ibáñez, L., Potau, N., Marcos, M. V. & de Zegher, F. Corticotropin-releasing hormone as adrenal androgen secretagogue. Pediatr. Res. 46, 351–353 (1999).
pubmed: 10473054
Cutler, G. B. et al. Adrenarche: a survey of rodents, domestic animals, and primates. Endocrinology 103, 2112–2118 (1978).
pubmed: 155005
Labrie, F. Adrenal androgens and intracrinology. Semin. Reprod. Med. 22, 299–309 (2004).
pubmed: 15635498
Berrehail, Z. et al. Sex steroid modulation of macrophages within the prostate tumor microenvironment. Am. J. Clin. Exp. Urol. 10, 98–110 (2022).
pubmed: 35528461 pmcid: 9077148
Toren, P. et al. Serum sex steroids as prognostic biomarkers in patients receiving androgen deprivation therapy for recurrent prostate cancer: a post hoc analysis of the PR.7 trial. Clin. Cancer Res. 24, 5305–5312 (2018).
pubmed: 30021911
Lévesque, E. et al. A comprehensive analysis of steroid hormones and progression of localized high-risk prostate cancer. Cancer Epidemiol. Biomark. Prev. 28, 701–706 (2019).
Moghissi, E., Ablan, F. & Horton, R. Origin of plasma androstanediol glucuronide in men. J. Clin. Endocrinol. Metab. 59, 417–421 (1984).
pubmed: 6746859
Bélanger, A., Brochu, M. & Cliche, J. Levels of plasma steroid glucuronides in intact and castrated men with prostatic cancer. J. Clin. Endocrinol. Metab. 62, 812–815 (1986).
pubmed: 2937801
Labrie, F. Intracrinology. Mol. Cell. Endocrinol. 78, C113–C118 (1991).
pubmed: 1838082
Labrie, C., Belanger, A. & Labrie, F. Androgenic activity of dehydroepiandrosterone and androstenedione in the rat ventral prostate. Endocrinology 123, 1412–1417 (1988).
pubmed: 2969802
Logothetis, C. J., Efstathiou, E., Manuguid, F. & Kirkpatrick, P. Abiraterone acetate. Nat. Rev. Drug Discov. 10, 573–574 (2011).
pubmed: 21804589
Barrie, S. E. et al. Pharmacology of novel steroidal inhibitors of cytochrome P45017 (17α-hydroxylase/C
pubmed: 7918112
Potter, G. A., Barrie, S. E., Jarman, M. & Rowlands, M. G. Novel steroidal inhibitors of human cytochrome P45017α-hydroxylase-C
pubmed: 7608911
Rowlands, M. G. et al. Esters of 3-pyridylacetic acid that combine potent inhibition of 17α-hydroxylase/C
pubmed: 7473546
Haidar, S., Ehmer, P. B., Barassin, S., Batzl-Hartmann, C. & Hartmann, R. W. Effects of novel 17α-hydroxylase/C17, 20-lyase (P450 17, CYP 17) inhibitors on androgen biosynthesis in vitro and in vivo. J. Steroid Biochem. Mol. Biol. 84, 555–562 (2003).
pubmed: 12767280
Labrie, F. Prostate cancer bicalutamide dose increase in castration-resistant disease. Nat. Rev. Urol. 12, 132–133 (2015).
pubmed: 25487048
Student, S., Hejmo, T., Poterala-Hejmo, A., Lesniak, A. & Buldak, R. Anti-androgen hormonal therapy for cancer and other diseases. Eur. J. Pharmacol. https://doi.org/10.1016/j.ejphar.2019.172783 (2020).
doi: 10.1016/j.ejphar.2019.172783 pubmed: 31712062
Clegg, N. J. et al. ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res. 72, 1494–1503 (2012).
pubmed: 22266222 pmcid: 3306502
Moilanen, A. M. et al. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci. Rep. 5, 12007 (2015).
pubmed: 26137992 pmcid: 4490394
Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).
pubmed: 19359544 pmcid: 2981508
Rodriguez-Vida, A., Galazi, M., Rudman, S., Chowdhury, S. & Sternberg, C. N. Enzalutamide for the treatment of metastatic castration-resistant prostate cancer. Drug Des. Dev. Ther. 9, 3325–3339 (2015).
Saad, F. & Hotte, S. J. Guidelines for the management of castrate-resistant prostate cancer. Can. Urol. Assoc. J. 4, 380–384 (2010).
pubmed: 21191494 pmcid: 2997826
Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).
pubmed: 26000489 pmcid: 4484602
Montgomery, R. B. et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68, 4447–4454 (2008).
pubmed: 18519708 pmcid: 2536685
Ylitalo, E. B. et al. Subgroups of castration-resistant prostate cancer bone metastases defined through an inverse relationship between androgen receptor activity and immune response. Eur. Urol. 71, 776–787 (2017).
pubmed: 27497761
Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).
pubmed: 20579941 pmcid: 3198787
Abeshouse, A. et al. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).
Annala, M. et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov. 8, 444–457 (2018).
pubmed: 29367197
Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).
pubmed: 22722839 pmcid: 3396711
Chang, K. H. et al. A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer. Cell 154, 1074–1084 (2013).
pubmed: 23993097 pmcid: 3931012
Dai, C. et al. Direct metabolic interrogation of dihydrotestosterone biosynthesis from adrenal precursors in primary prostatectomy tissues. Clin. Cancer Res. 23, 6351–6362 (2017).
pubmed: 28733443 pmcid: 5641243
Li, Z. F. et al. Redirecting abiraterone metabolism to fine-tune prostate cancer anti-androgen therapy. Nature 533, 547 (2016).
pubmed: 27225130 pmcid: 5111629
Taplin, M. E. et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res. 59, 2511–2515 (1999).
pubmed: 10363963
Dehm, S. M. & Tindall, D. J. Alternatively spliced androgen receptor variants. Endocr. Relat. Cancer 18, R183–R196 (2011).
pubmed: 21778211 pmcid: 3235645
Audet-Walsh, É., Yee, T., Tam, I. S. & Giguère, V. Inverse regulation of DHT synthesis enzymes 5α-reductase types 1 and 2 by the androgen receptor in prostate cancer. Endocrinology 158, 1015–1021 (2017).
pubmed: 28324044
Coutinho, I., Day, T. K., Tilley, W. D. & Selth, L. A. Androgen receptor signaling in castration-resistant prostate cancer: a lesson in persistence. Endocr. Relat. Cancer 23, T179–T197 (2016).
pubmed: 27799360
Lu, J., Van der Steen, T. & Tindall, D. J. Are androgen receptor variants a substitute for the full-length receptor? Nat. Rev. Urol. 12, 137–144 (2015).
pubmed: 25666893
Zhu, Y. & Luo, J. Regulation of androgen receptor variants in prostate cancer. Asian J. Urol. 7, 251–257 (2020).
pubmed: 33024700 pmcid: 7525062
Visakorpi, T. et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet. 9, 401–406 (1995).
pubmed: 7795646
Koivisto, P. et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 57, 314–319 (1997).
pubmed: 9000575
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).
pubmed: 22588877
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).
pubmed: 23550210 pmcid: 4160307
Viswanathan, S. R. et al. Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing. Cell 174, 433–447.e419 (2018).
pubmed: 29909985 pmcid: 6046279
Takeda, D. Y. et al. A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell 174, 422–432.e413 (2018).
pubmed: 29909987 pmcid: 6046260
Veldscholte, J. et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173, 534–540 (1990).
pubmed: 2260966
Gottlieb, B., Beitel, L. K., Nadarajah, A., Paliouras, M. & Trifiro, M. The androgen receptor gene mutations database: 2012 update. Hum. Mutat. 33, 887–894 (2012).
pubmed: 22334387
Thin, T. H. et al. Isolation and characterization of androgen receptor mutant, AR(M749L), with hypersensitivity to 17-β estradiol treatment. J. Biol. Chem. 278, 7699–7708 (2003).
pubmed: 12499384
Tan, J. et al. Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol. Endocrinol. 11, 450–459 (1997).
pubmed: 9092797
Culig, Z. et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol. Endocrinol. 7, 1541–1550 (1993).
pubmed: 8145761
Zhao, X. Y. et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat. Med. 6, 703–706 (2000).
pubmed: 10835690
Korpal, M. et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov. 3, 1030–1043 (2013).
pubmed: 23842682
Balbas, M. D. et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. Elife 2, e00499 (2013).
pubmed: 23580326 pmcid: 3622181
Prekovic, S. et al. The effect of F877L and T878A mutations on androgen receptor response to enzalutamide. Mol. Cancer Ther. 15, 1702–1712 (2016).
pubmed: 27196756
Hara, T. et al. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res. 63, 149–153 (2003).
pubmed: 12517791
Scholtes, C. & Giguère, V. Transcriptional control of energy metabolism by nuclear receptors. Nat. Rev. Mol. Cell Biol. 23, 750–770 (2022).
pubmed: 35577989
Gelmann, E. P. Molecular biology of the androgen receptor. J. Clin. Oncol. 20, 3001–3015 (2002).
pubmed: 12089231
Wright, C. J., Smith, C. W. J. & Jiggins, C. D. Alternative splicing as a source of phenotypic diversity. Nat. Rev. Genet. 23, 697–710 (2022).
pubmed: 35821097
Guo, Z. Y. et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 69, 2305–2313 (2009).
pubmed: 19244107 pmcid: 2672822
Hu, R. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 69, 16–22 (2009).
pubmed: 19117982 pmcid: 2614301
Lu, C. & Luo, J. Decoding the androgen receptor splice variants. Transl. Androl. Urol. 2, 178–186 (2013).
pubmed: 25356377 pmcid: 4209743
Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).
pubmed: 25184630 pmcid: 4201502
Paschalis, A. et al. Alternative splicing in prostate cancer. Nat. Rev. Clin. Oncol. 15, 663–675 (2018).
pubmed: 30135575
Shah, K. et al. Androgen receptor signaling regulates the transcriptome of prostate cancer cells by modulating global alternative splicing. Oncogene 39, 6172–6189 (2020).
pubmed: 32820253 pmcid: 7515832
Germain, L. et al. Alternative splicing regulation by the androgen receptor in prostate cancer cells. J. Steroid Biochem. Mol. Biol. 202, 105710 (2020).
pubmed: 32534106
Locke, J. A. et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 68, 6407–6415 (2008).
pubmed: 18676866
Auchus, R. J. The backdoor pathway to dihydrotestosterone. Trends Endocrinol. Metab. 15, 432–438 (2004).
pubmed: 15519890
Stanbrough, M. et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 66, 2815–2825 (2006).
pubmed: 16510604
Cai, C. et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res. 71, 6503–6513 (2011).
pubmed: 21868758 pmcid: 3209585
Mohler, J. L. et al. Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Cancer Res. 71, 1486–1496 (2011).
pubmed: 21303972 pmcid: 3075600
Mohler, J. L., Titus, M. A. & Wilson, E. M. Potential prostate cancer drug target: bioactivation of androstanediol by conversion to dihydrotestosterone. Clin. Cancer Res. 17, 5844–5849 (2011).
pubmed: 21705451 pmcid: 3177006
Fiandalo, M. V., Gewirth, D. T. & Mohler, J. L. Potential impact of combined inhibition of 3α-oxidoreductases and 5α-reductases on prostate cancer. Asian J. Urol. 6, 50–56 (2019).
pubmed: 30775248
Barnard, M., Mostaghel, E. A., Auchus, R. J. & Storbeck, K. H. The role of adrenal derived androgens in castration resistant prostate cancer. J. Steroid Biochem. Mol. Biol. 197, 105506 (2020).
pubmed: 31672619
Pouliot, F. et al. Extragonadal steroids contribute significantly to androgen receptor activity and development of castration resistance in recurrent prostate cancer after primary therapy. J. Urol. 203, 940–948 (2020).
pubmed: 31845837
Rouleau, M. et al. Extensive alteration of androgen precursor levels after castration in prostate cancer patients and their association with active androgen level. J. Urol. https://doi.org/10.1097/JU.0000000000002923 (2022).
doi: 10.1097/JU.0000000000002923 pubmed: 36102111
Waltering, K. K., Urbanucci, A. & Visakorpi, T. Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol. Cell Endocrinol. 360, 38–43 (2012).
pubmed: 22245783
Agoulnik, I. U. et al. Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res. 65, 7959–7967 (2005).
pubmed: 16140968
Agoulnik, I. U. et al. Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res. 66, 10594–10602 (2006).
pubmed: 17079484
He, B. et al. GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex. Proc. Natl Acad. Sci. USA 111, 18261–18266 (2014).
pubmed: 25489091 pmcid: 4280633
Malik, R. et al. Targeting the MLL complex in castration-resistant prostate cancer. Nat. Med. 21, 344–352 (2015).
pubmed: 25822367 pmcid: 4390530
Xu, J., Wu, R. C. & O’Malley, B. W. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat. Rev. Cancer 9, 615–630 (2009).
pubmed: 19701241 pmcid: 2908510
Arora, V. K. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155, 1309–1322 (2013).
pubmed: 24315100 pmcid: 3932525
Baloch, H. M. et al. Recognition and treatment of adrenal insufficiency secondary to abiraterone: a case report and literature review. Oncology 97, 301–305 (2019).
pubmed: 31390632
Grist, E. & Attard, G. The development of abiraterone acetate for castration-resistant prostate cancer. Urol. Oncol. 33, 289–294 (2015).
pubmed: 26025264
Kach, J. et al. Selective glucocorticoid receptor modulators (SGRMs) delay castrate-resistant prostate cancer growth. Mol. Cancer Ther. 16, 1680–1692 (2017).
pubmed: 28428441 pmcid: 5544558
Rosette, C. et al. The dual androgen receptor and glucocorticoid receptor antagonist CB-03-10 as potential treatment for tumors that have acquired GR-mediated resistance to AR blockade. Mol. Cancer Ther. 19, 2256–2266 (2020).
pubmed: 32847976
Serritella, A. V. et al. Phase I/II trial of enzalutamide and mifepristone, a glucocorticoid receptor antagonist, for metastatic castration-resistant prostate cancer. Clin. Cancer Res. 28, 1549–1559 (2022).
pubmed: 35110415 pmcid: 9012680
Shah, N. et al. Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer. Elife https://doi.org/10.7554/eLife.27861 (2017).
doi: 10.7554/eLife.27861 pubmed: 29165248 pmcid: 5720592
Valle, S. & Sharifi, N. Targeting glucocorticoid metabolism in prostate cancer. Endocrinology https://doi.org/10.1210/endocr/bqab132 (2021).
doi: 10.1210/endocr/bqab132 pubmed: 34180973 pmcid: 8312637
Bluemn, E. G. et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell 32, 474–489.e476 (2017).
pubmed: 29017058 pmcid: 5750052
Labrecque, M. P., Alumkal, J. J., Coleman, I. M., Nelson, P. S. & Morrissey, C. The heterogeneity of prostate cancers lacking AR activity will require diverse treatment approaches. Endocr. Relat. Cancer 28, T51–T66 (2021).
pubmed: 33792558 pmcid: 8292199
Beltran, H. & Demichelis, F. Therapy considerations in neuroendocrine prostate cancer: what next? Endocr. Relat. Cancer 28, T67–T78 (2021).
pubmed: 34111024 pmcid: 8289743
Xie, Y. C., Ning, S. Y. & Hu, J. P. Molecular mechanisms of neuroendocrine differentiation in prostate cancer progression. J. Cancer Res. Clin. Oncol. 148, 1813–1823 (2022).
pubmed: 35633416 pmcid: 9189092
Davies, A. H., Beltran, H. & Zoubeidi, A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. 15, 271–286 (2018).
pubmed: 29460922
Kanayama, M. & Luo, J. Delineating the molecular events underlying development of prostate cancer variants with neuroendocrine/small cell carcinoma characteristics. Int. J. Mol. Sci. https://doi.org/10.3390/ijms222312742 (2021).
doi: 10.3390/ijms222312742 pubmed: 34884545 pmcid: 8657721
Davies, A., Zoubeidi, A. & Selth, L. A. The epigenetic and transcriptional landscape of neuroendocrine prostate cancer. Endocr. Relat. Cancer 27, R35–R50 (2020).
pubmed: 31804971
Chen, C. D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).
pubmed: 14702632
Stone, K. R., Mickey, D. D., Wunderli, H., Mickey, G. H. & Paulson, D. F. Isolation of a human prostate carcinoma cell line (DU 145). Int. J. Cancer 21, 274–281 (1978).
pubmed: 631930
Mickey, D., Stone, K., Wunderli, H., Mickey, G. & Paulson, D. Characterization of a human prostate adenocarcinoma cell line (DU 145) as a monolayer culture and as a solid tumor in athymic mice. Prog. Clin. Biol. Res. 37, 67–84 (1980).
pubmed: 7384095
Tilley, W. D., Wilson, C. M., Marcelli, M. & McPhaul, M. J. Androgen receptor gene-expression in human prostate carcinoma cell-lines. Cancer Res. 50, 5382–5386 (1990).
pubmed: 2386943
Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F. & Jones, L. W. Establishment and characterization of a human prostatic-carcinoma cell-line (PC-3). Investig. Urol. 17, 16–23 (1979).
Edelstein, R. A. et al. Detection of human androgen receptor messenger-RNA expression abnormalities by competitive PCR. DNA Cell Biol. 13, 265–273 (1994).
pubmed: 7909666
Horoszewicz, J. et al. The LNCaP cell line — a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res. 37, 115–132 (1980).
pubmed: 7384082
Ravery, V. et al. The use of estramustine phosphate in the modern management of advanced prostate cancer. BJU Int. 108, 1782–1786 (2011).
pubmed: 21756277
Horoszewicz, J. S. et al. LNCaP model of human prostatic-carcinoma. Cancer Res. 43, 1809–1818 (1983).
pubmed: 6831420
Namekawa, T., Ikeda, K., Horie-Inoue, K. & Inoue, S. Application of prostate cancer models for preclinical study: advantages and limitations of cell lines, patient-derived xenografts, and three-dimensional culture of patient-derived cells. Cells https://doi.org/10.3390/cells8010074 (2019).
doi: 10.3390/cells8010074 pubmed: 30669516 pmcid: 6357050
Sobel, R. E. & Sadar, M. D. Cell lines used in prostate cancer research: a compendium of old and new lines — part 1. J. Urol. 173, 342–359 (2005).
pubmed: 15643172
Wu, H. C. et al. Derivation of androgen-independent human LNCaP prostatic-cancer cell sublines — role of bone stromal cells. Int. J. Cancer 57, 406–412 (1994).
pubmed: 8169003
Thalmann, G. N. et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate-cancer. Cancer Res. 54, 2577–2581 (1994).
pubmed: 8168083
Thalmann, G. N. et al. LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate 44, 91–103 (2000).
pubmed: 10881018
Pflug, B. R., Reiter, R. E. & Nelson, J. B. Caveolin expression is decreased following androgen deprivation in human prostate cancer cell lines. Prostate 40, 269–273 (1999).
pubmed: 10420156
Zhu, Y. Z. et al. Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors. Oncogene 39, 6935–6949 (2020).
pubmed: 32989253 pmcid: 7655549
Hu, R. et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res. 72, 3457–3462 (2012).
pubmed: 22710436 pmcid: 3415705
Bishop, J. L. et al. PD-L1 is highly expressed in enzalutamide resistant prostate cancer. Oncotarget 6, 234–242 (2015).
pubmed: 25428917
Pretlow, T. G. et al. Xenografts of primary human prostatic-carcinoma. J. Natl Cancer Inst. 85, 394–402 (1993).
pubmed: 8433392
Wainstein, M. A. et al. CWR22 — androgen-dependent xenograft model derived from a primary human prostatic-carcinoma. Cancer Res. 54, 6049–6052 (1994).
pubmed: 7525052
Nagabhushan, M. et al. CWR22: the first human prostate cancer xenograft with strongly androgen-dependent relapsed strains both in vivo and in soft agar. Cancer Res. 56, 3042–3046 (1996).
pubmed: 8674060
Sramkoski, R. M. et al. A new human prostate carcinoma cell line, 22Rʊ1. Vitr. Cell. Dev. Biol. Anim. 35, 403–409 (1999).
Li, Y. M. et al. Intragenic rearrangement and altered RNA splicing of the androgen receptor in a cell-based model of prostate cancer progression. Cancer Res. 71, 2108–2117 (2011).
pubmed: 21248069 pmcid: 3059379
Tepper, C. G. et al. Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Res. 62, 6606–6614 (2002).
pubmed: 12438256
Dehm, S. M., Schmidt, L. J., Heemers, H. V., Vessella, R. L. & Tindall, D. J. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 68, 5469–5477 (2008).
pubmed: 18593950 pmcid: 2663383
Klein, K. A. et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat. Med. 3, 402–408 (1997).
pubmed: 9095173
van-Bokhoven, A. et al. Molecular characterization of human prostate carcinoma cell lines. Prostate 57, 205–225 (2003).
pubmed: 14518029
Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).
pubmed: 25201530 pmcid: 4237931
Korenchuk, S. et al. VCaP, a cell-based model system of human prostate cancer. Vivo 15, 163–168 (2001).
Liu, W. N. et al. Homozygous deletions and recurrent amplifications implicate new genes involved in prostate cancer. Neoplasia 10, 897–907 (2008).
pubmed: 18670647 pmcid: 2481576
Li, Y. et al. AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression. Oncogene 31, 4759–4767 (2012).
pubmed: 22266865 pmcid: 3337879
Sharp, A. et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J. Clin. Invest. 129, 192–208 (2019).
pubmed: 30334814
Cao, Z. et al. Effects of resin or charcoal treatment on fetal bovine serum and bovine calf serum. Endocr. Res. 34, 101–108 (2009).
pubmed: 19878070
Tu, C. et al. Proteomic analysis of charcoal-stripped fetal bovine serum reveals changes in the insulin-like growth factor signaling pathway. J. Proteome Res. 17, 2963–2977 (2018).
pubmed: 30014700 pmcid: 10231688
Shen, R. et al. Transdifferentiation of cultured human prostate cancer cells to a neuroendocrine cell phenotype in a hormone-depleted medium. Urologic Oncol. 3, 67–75 (1997).
Gabai, G., Mongillo, P., Giaretta, E. & Marinelli, L. Do dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) play a role in the stress response in domestic animals. Front. Vet. Sci. 7, 588835 (2020).
pubmed: 33195624 pmcid: 7649144
van de Merbel, A. F., van der Horst, G. & van der Pluijm, G. Patient-derived tumour models for personalized therapeutics in urological cancers. Nat. Rev. Urol. 18, 33–45 (2021).
pubmed: 33173206
Sailer, V. et al. Experimental in vitro, ex vivo and in vivo models in prostate cancer research. Nat. Rev. Urol. https://doi.org/10.1038/s41585-022-00677-z (2022).
doi: 10.1038/s41585-022-00677-z pubmed: 36451039
Templeton, A. R. et al. Patient-derived explants as a precision medicine patient-proximal testing platform informing cancer management. Front. Oncol. 11, 767697 (2021).
pubmed: 34988013 pmcid: 8721047
Powley, I. R. et al. Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br. J. Cancer 122, 735–744 (2020).
pubmed: 31894140 pmcid: 7078311
Champagne, A. et al. A transcriptional biosensor to monitor single cancer cell therapeutic responses by bioluminescence microscopy. Theranostics 12, 474–492 (2022).
pubmed: 34976196 pmcid: 8692902
Neveu, B. et al. A PCA3 gene-based transcriptional amplification system targeting primary prostate cancer. Oncotarget 7, 1300–1310 (2016).
pubmed: 26594800
Boibessot, C. et al. Using ex vivo culture to assess dynamic phenotype changes in human prostate macrophages following exposure to therapeutic drugs. Sci. Rep. 11, 19299 (2021).
pubmed: 34588590 pmcid: 8481239
Shafi, A. A. et al. Patient-derived models reveal impact of the tumor microenvironment on therapeutic response. Eur. Urol. Oncol. 1, 325–337 (2018).
pubmed: 30467556 pmcid: 6241309
Centenera, M. M. et al. A patient-derived explant (PDE) model of hormone-dependent cancer. Mol. Oncol. 12, 1608–1622 (2018).
pubmed: 30117261 pmcid: 6120230
Drost, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347–358 (2016).
pubmed: 26797458 pmcid: 4793718
Frégeau-Proulx, L., Lacouture, A., Weidmann, C., Jobin, C. & Audet-Walsh, É. FACS-free isolation and purification protocol of mouse prostate epithelial cells for organoid primary culture. MethodsX 9, 101843 (2022).
pubmed: 36147450 pmcid: 9486617
Pamarthy, S. & Sabaawy, H. E. Patient derived organoids in prostate cancer: improving therapeutic efficacy in precision medicine. Mol. Cancer 20, 125 (2021).
pubmed: 34587953 pmcid: 8480086
Richards, Z. et al. Prostate stroma increases the viability and maintains the branching phenotype of human prostate organoids. iScience 12, 304–317 (2019).
pubmed: 30735898 pmcid: 6365938
McCray, T. et al. Vitamin D sufficiency enhances differentiation of patient-derived prostate epithelial organoids. iScience 24, 101974 (2021).
pubmed: 33458620 pmcid: 7797919
Crowell, P. D. et al. Expansion of luminal progenitor cells in the aging mouse and human prostate. Cell Rep. 28, 1499–1510.e1496 (2019).
pubmed: 31390564 pmcid: 6710009
Karkampouna, S. et al. Patient-derived xenografts and organoids model therapy response in prostate cancer. Nat. Commun. 12, 1117 (2021).
pubmed: 33602919 pmcid: 7892572
Frégeau-Proulx, L. et al. Multiple metabolic pathways fuel the truncated tricarboxylic acid cycle of the prostate to sustain constant citrate production and secretion. Mol. Metab. 62, 101516 (2022).
pubmed: 35598879 pmcid: 9168698
Rea, D. et al. Mouse models in prostate cancer translational research: from xenograft to PDX. Biomed. Res. Int. 2016, 9750795 (2016).
pubmed: 27294148 pmcid: 4887629
Woo, X. Y. et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat. Genet. 53, 86–99 (2021).
pubmed: 33414553 pmcid: 7808565
Zhang, W. et al. Ex vivo treatment of prostate tumor tissue recapitulates in vivo therapy response. Prostate 79, 390–402 (2019).
pubmed: 30520109
Servant, R. et al. Prostate cancer patient-derived organoids: detailed outcome from a prospective cohort of 81 clinical specimens. J. Pathol. 254, 543–555 (2021).
pubmed: 33934365 pmcid: 8361965
McPherson, S. J. et al. Estrogen receptor-β activated apoptosis in benign hyperplasia and cancer of the prostate is androgen independent and TNFα mediated. Proc. Natl Acad. Sci. USA 107, 3123–3128 (2010).
pubmed: 20133657 pmcid: 2840300
Karthaus, W. R. et al. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science 368, 497–505 (2020).
pubmed: 32355025 pmcid: 7313621
Sedelaar, J. P. M., Dalrymple, S. S. & Isaacs, J. T. Of mice and men-warning: intact versus castrated adult male mice as xenograft hosts are equivalent to hypogonadal versus abiraterone treated aging human males, respectively. Prostate 73, 1316–1325 (2013).
pmcid: 4009979
Lin, D. et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014).
pubmed: 24356420
Gleave, A. M., Ci, X., Lin, D. & Wang, Y. A synopsis of prostate organoid methodologies, applications, and limitations. Prostate 80, 518–526 (2020).
pubmed: 32084293
Lange, T. et al. Development and characterization of a spontaneously metastatic patient-derived xenograft model of human prostate cancer. Sci. Rep. 8, 17535 (2018).
pubmed: 30510249 pmcid: 6277427
Dutil, J., Chen, Z. H., Monteiro, A. N., Teer, J. K. & Eschrich, S. A. An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines. Cancer Res. 79, 1263–1273 (2019).
pubmed: 30894373 pmcid: 6445675
Woods-Burnham, L. et al. The 22Rv1 prostate cancer cell line carries mixed genetic ancestry: implications for prostate cancer health disparities research using pre-clinical models. Prostate 77, 1601–1608 (2017).
pubmed: 29030865 pmcid: 5687283
Arenas-Gallo, C. et al. Race and prostate cancer: genomic landscape. Nat. Rev. Urol. 19, 547–561 (2022).
pubmed: 35945369
Navone, N. M. et al. Establishment of two human prostate cancer cell lines derived from a single bone metastasis. Clin. Cancer Res. 3, 2493–2500 (1997).
pubmed: 9815652
Theodore, S. et al. Establishment and characterization of a pair of non-malignant and malignant tumor derived cell lines from an African American prostate cancer patient. Int. J. Oncol. 37, 1477–1482 (2010).
pubmed: 21042716
Nicolas, N. et al. African-American prostate normal and cancer cells for health disparities research. Adv. Exp. Med. Biol. 1164, 101–108 (2019).
pubmed: 31576543
Okada, H. et al. Establishment of a prostatic small-cell carcinoma cell line (SO-MI). Prostate 56, 231–238 (2003).
pubmed: 12772193
Okasho, K. et al. Establishment and characterization of a novel treatment-related neuroendocrine prostate cancer cell line KUCaP13. Cancer Sci. 112, 2781–2791 (2021).
pubmed: 33960594 pmcid: 8253279
Vlietstra, R. J., van Alewijk, D., Hermans, K. G. L., van Steenbrugge, G. J. & Trapman, J. Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res. 58, 2720–2723 (1998).
pubmed: 9661880
McMenamin, M. E. et al. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res. 59, 4291–4296 (1999).
pubmed: 10485474
Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).
pubmed: 9072974
Isaacs, W. B., Carter, B. S. & Ewing, C. M. Wild-type P53 suppresses growth of human prostate-cancer cells containing mutant P53 alleles. Cancer Res. 51, 4716–4720 (1991).
pubmed: 1873816
Perner, S. et al. TMPRSS2: ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res. 66, 8337–8341 (2006).
pubmed: 16951139
Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15, 356–362 (1997).
pubmed: 9090379
Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).
pubmed: 16254181
El Sheikh, S. S., Domin, J., Abel, P., Stamp, G. & Lalani, E. N. Phosphorylation of both EGFR and ErbB2 is a reliable predictor of prostate cancer cell proliferation in response to EGF. Neoplasia 6, 846–853 (2004).
pubmed: 15720812
Saramaki, O. R. et al. TMPRSS2: ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin. Cancer Res. 14, 3395–3400 (2008).
pubmed: 18519769
Whang, Y. E. et al. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc. Natl Acad. Sci. USA 95, 5246–5250 (1998).
pubmed: 9560261 pmcid: 20246
van-Bokhoven, A., Varella-Garcia, M., Korch, C., Hessels, D. & Miller, G. J. Widely used prostate carcinoma cell lines share common origins. Prostate 47, 36–51 (2001).
pubmed: 11304728
Jiang, X. N., Chen, S., Asara, J. M. & Balk, S. P. Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110β and p110δ catalytic subunits. J. Biol. Chem. 285, 14980–14989 (2010).
pubmed: 20231295 pmcid: 2865293
Hodgson, M. C. et al. Decreased expression and androgen regulation of the tumor suppressor gene INPP4B in prostate cancer. Cancer Res. 71, 572–582 (2011).
pubmed: 21224358 pmcid: 3077543
Abida, W. et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl Acad. Sci. USA 116, 11428–11436 (2019).
pubmed: 31061129 pmcid: 6561293
Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).
pubmed: 23622249 pmcid: 3690918
Fraser, M. et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 541, 359–364 (2017).
pubmed: 28068672
Kumar, A. et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 22, 369–378 (2016).
pubmed: 26928463 pmcid: 5045679
Gerhauser, C. et al. Molecular evolution of early-onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell 34, 996–1011.e1018 (2018).
pubmed: 30537516 pmcid: 7444093
Granlund, K. L. et al. Hyperpolarized MRI of human prostate cancer reveals increased lactate with tumor grade driven by monocarboxylate transporter 1. Cell Metab. 31, 105–114.e103 (2020).
pubmed: 31564440
Stopsack, K. H. et al. Oncogenic genomic alterations, clinical phenotypes, and outcomes in metastatic castration-sensitive prostate cancer. Clin. Cancer Res. 26, 3230–3238 (2020).
pubmed: 32220891 pmcid: 7334067
Nguyen, B. et al. Pan-cancer analysis of CDK12 alterations identifies a subset of prostate cancers with distinct genomic and clinical characteristics. Eur. Urol. 78, 671–679 (2020).
pubmed: 32317181 pmcid: 7572747
Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016).
pubmed: 26855148 pmcid: 4777652
Barbieri, C. E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).
pubmed: 22610119 pmcid: 3673022
Hieronymus, H. et al. Copy number alteration burden predicts prostate cancer relapse. Proc. Natl Acad. Sci. USA 111, 11139–11144 (2014).
pubmed: 25024180 pmcid: 4121784
Armenia, J. et al. The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50, 645–651 (2018).
pubmed: 29610475 pmcid: 6107367
Abida, W. et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis. Oncol. https://doi.org/10.1200/po.17.00029 (2017).
doi: 10.1200/po.17.00029 pubmed: 28825054 pmcid: 5558263
Ren, S. et al. Whole-genome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur. Urol. 73, 322–339 (2018).
pubmed: 28927585
Stopsack, K. H. et al. Differences in prostate cancer genomes by self-reported race: contributions of genetic ancestry, modifiable cancer risk factors, and clinical factors. Clin. Cancer Res. 28, 318–326 (2022).
pubmed: 34667026

Auteurs

Lucas Germain (L)

Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada.
Department of molecular medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada.

Camille Lafront (C)

Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada.
Department of molecular medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada.

Virginie Paquette (V)

Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada.
Department of molecular medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada.

Bertrand Neveu (B)

Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada.
Oncology Axis, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada.

Jean-Sébastien Paquette (JS)

Laboratoire de recherche et d'innovation en médecine de première ligne (ARIMED), Groupe de médecine de famille universitaire de Saint-Charles-Borromée, CISSS Lanaudière, Saint-Charles-Borromée, QC, Canada.
VITAM Research Centre for Sustainable Health, Québec, QC, Canada.
Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.

Frédéric Pouliot (F)

Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada.
Oncology Axis, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada.
Department of surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada.

Étienne Audet-Walsh (É)

Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada. etienne.audet-walsh@crchudequebec.ulaval.ca.
Department of molecular medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada. etienne.audet-walsh@crchudequebec.ulaval.ca.
Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada. etienne.audet-walsh@crchudequebec.ulaval.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH