Characterization of the Technofunctional Properties and Three-Dimensional Structure Prediction of 11S Globulins from Amaranth (
assembly capacity
bioinformatic analysis
mass spectrometry analysis
physicochemical and functional properties
Journal
Foods (Basel, Switzerland)
ISSN: 2304-8158
Titre abrégé: Foods
Pays: Switzerland
ID NLM: 101670569
Informations de publication
Date de publication:
19 Jan 2023
19 Jan 2023
Historique:
received:
06
12
2022
revised:
09
01
2023
accepted:
11
01
2023
entrez:
11
2
2023
pubmed:
12
2
2023
medline:
12
2
2023
Statut:
epublish
Résumé
Amaranth 11S globulins (Ah11Sn) are an excellent source of essential amino acids; however, there have been no investigations on the characterization of their techno-functional properties at different pH conditions and NaCl concentrations, which are necessary for food formulations. In this work, we report a new two-step purification method for native Ah11Sn with purity levels of ~95%. LC-MS/MS analysis revealed the presence of three different Ah11Sn paralogs named Ah11SB, A11SC, and Ah11SHMW, and their structures were predicted with Alphafold2. We carried out an experimental evaluation of Ah11Sn surface hydrophobicity, solubility, emulsifying properties, and assembly capacity to provide an alternative application of these proteins in food formulations. Ah11Sn showed good surface hydrophobicity, solubility, and emulsifying properties at pH values of 2 and 3. However, the emulsions became unstable at 60 min. The assembly capacity of Ah11Sn evaluated by DLS analysis showed mainly the trimeric assembly (~150-170 kDa). This information is beneficial to exploit and utilize Ah11Sn rationally in food systems.
Identifiants
pubmed: 36765990
pii: foods12030461
doi: 10.3390/foods12030461
pmc: PMC9914310
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : CONACyT grants
ID : CB-2016-01-285001, INFR-2017-01-280608, CB-2018-A1-S-18011, CF-2019-33-549477 and INFR-2021-17-316456.
Références
J Agric Food Chem. 2013 Apr 10;61(14):3509-16
pubmed: 23495835
Methods Mol Biol. 2022;2512:281-290
pubmed: 35818012
Food Chem. 2022 Dec 1;396:133681
pubmed: 35853375
Anal Biochem. 1976 May 7;72:248-54
pubmed: 942051
Bioinformatics. 2003 Dec 12;19(18):2500-1
pubmed: 14668246
J Plant Physiol. 2011 Nov 15;168(17):2102-9
pubmed: 21794947
Acta Crystallogr F Struct Biol Commun. 2022 Sep 1;78(Pt 9):324-329
pubmed: 36048082
Methods Enzymol. 1997;277:396-404
pubmed: 9379925
Protein Sci. 2018 Jan;27(1):112-128
pubmed: 28836357
BMC Plant Biol. 2019 Feb 6;19(1):59
pubmed: 30727945
J Comput Chem. 2010 Jan 30;31(2):455-61
pubmed: 19499576
Peptides. 2010 Sep;31(9):1635-42
pubmed: 20599579
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
J Agric Food Chem. 2008 Nov 12;56(21):10273-9
pubmed: 18828597
Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7395-400
pubmed: 12771376
Proteins. 2009;77 Suppl 9:114-22
pubmed: 19768677
Food Chem. 2012 Nov 15;135(2):819-26
pubmed: 22868164
Food Res Int. 2020 Nov;137:109387
pubmed: 33233089
Nature. 1970 Aug 15;227(5259):680-5
pubmed: 5432063
Plant Genome. 2016 Mar;9(1):
pubmed: 27898770
Nitric Oxide. 2010 Sep 15;23(2):106-11
pubmed: 20435155
Nucleic Acids Res. 2017 Jul 3;45(W1):W320-W324
pubmed: 28387820
J Agric Food Chem. 2005 Nov 2;53(22):8736-44
pubmed: 16248579
Food Chem. 2016 Feb 1;192:203-11
pubmed: 26304339
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
J Agric Food Chem. 2010 May 26;58(10):6395-402
pubmed: 20429510
J Agric Food Chem. 2004 May 19;52(10):3089-96
pubmed: 15137858
J Agric Food Chem. 2008 Feb 27;56(4):1233-40
pubmed: 18211015
BMC Biol. 2017 Aug 31;15(1):74
pubmed: 28854926
Biochim Biophys Acta. 1980 Jul 24;624(1):13-20
pubmed: 7407231
Physiol Plant. 2012 May;145(1):140-53
pubmed: 22017287
Plant Biol (Stuttg). 2011 May;13(3):472-82
pubmed: 21489098
Protein Sci. 1993 Sep;2(9):1511-9
pubmed: 8401235
Protein Pept Lett. 2017;24(3):267-277
pubmed: 28000570
Annu Rev Food Sci Technol. 2011;2:59-73
pubmed: 22129375