Temporal Diffusion Ratio (TDR) for imaging restricted diffusion: Optimisation and pre-clinical demonstration.
Axon diameter
Diffusion
Microstructure
Optimization
Spinal cord
TDR
Journal
NeuroImage
ISSN: 1095-9572
Titre abrégé: Neuroimage
Pays: United States
ID NLM: 9215515
Informations de publication
Date de publication:
01 04 2023
01 04 2023
Historique:
received:
22
07
2022
revised:
12
01
2023
accepted:
02
02
2023
pubmed:
8
2
2023
medline:
4
3
2023
entrez:
7
2
2023
Statut:
ppublish
Résumé
Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.
Identifiants
pubmed: 36750150
pii: S1053-8119(23)00078-2
doi: 10.1016/j.neuroimage.2023.119930
pmc: PMC7615244
mid: EMS189813
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
119930Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 096646
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 104943
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T020296/1
Pays : United Kingdom
Informations de copyright
Copyright © 2023. Published by Elsevier Inc.
Références
NMR Biomed. 2012 May;25(5):795-805
pubmed: 22020832
Ann Clin Transl Neurol. 2017 Aug 15;4(9):663-679
pubmed: 28904988
Neuroimage. 2014 Dec;103:10-19
pubmed: 25225002
Cancer Res. 2022 Oct 04;82(19):3603-3613
pubmed: 35877201
J Magn Reson. 2011 May;210(1):151-7
pubmed: 21435926
Neuroimage. 2018 Nov 15;182:314-328
pubmed: 28774648
J Neurol Neurosurg Psychiatry. 1971 Aug;34(4):369-87
pubmed: 5096551
J Neurosci. 2014 Nov 12;34(46):15425-36
pubmed: 25392509
Commun Biol. 2020 Jul 7;3(1):354
pubmed: 32636463
Insights Imaging. 2018 Aug;9(4):535-547
pubmed: 29846907
IEEE Trans Med Imaging. 2009 Sep;28(9):1354-64
pubmed: 19273001
Neuroimage. 2015 Nov 15;122:373-84
pubmed: 26241680
J Magn Reson. 1997 Nov;129(1):74-84
pubmed: 9405218
Neuroimage. 2022 May 1;251:118976
pubmed: 35168088
Neuroimage. 2021 May 1;231:117849
pubmed: 33582270
Neuroimage. 2019 Jan 15;185:379-387
pubmed: 30292815
Magn Reson Med. 2008 Jun;59(6):1347-54
pubmed: 18506799
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14472-7
pubmed: 20660718
Neuroimage. 2018 Nov 15;182:329-342
pubmed: 28818694
Brain Struct Funct. 2020 May;225(4):1277-1291
pubmed: 31563995
Neuroscience. 2014 Sep 12;276:48-71
pubmed: 24378955
PLoS Biol. 2015 Jul 23;13(7):e1002203
pubmed: 26204162
Brain Imaging Behav. 2021 Dec;15(6):2813-2823
pubmed: 34537917
Neuroimage. 2022 Aug 1;256:119277
pubmed: 35523369
NMR Biomed. 2019 Apr;32(4):e3841
pubmed: 29193413
Magn Reson Med. 1997 Jan;37(1):103-11
pubmed: 8978638
NMR Biomed. 2017 Jul;30(7):
pubmed: 28318071
Neuroimage. 2010 Oct 1;52(4):1374-89
pubmed: 20580932
Mol Pathol. 2001 Dec;54(6):386-92
pubmed: 11724913
Cancer Res. 2014 Apr 1;74(7):1902-12
pubmed: 24491802
Neuroimage. 2016 Nov 15;142:394-406
pubmed: 27523449
Neuroimage. 2015 Sep;118:494-507
pubmed: 26095093
Sci Rep. 2020 Jun 8;10(1):9223
pubmed: 32514049
Sci Rep. 2017 Apr 13;7:46147
pubmed: 28406156
Brain. 2009 May;132(Pt 5):1210-20
pubmed: 19403788
J Magn Reson B. 1994 Mar;103(3):255-60
pubmed: 8019777
PLoS One. 2015 Jul 21;10(7):e0133201
pubmed: 26197220
Neuroimage. 2020 Dec;223:117228
pubmed: 32798676
Neuroimage. 2010 Aug 1;52(1):20-31
pubmed: 20362683
Sci Data. 2022 Jan 18;9(1):7
pubmed: 35042861
J Cereb Blood Flow Metab. 2019 Jul;39(7):1336-1348
pubmed: 29436246
NMR Biomed. 2016 Jan;29(1):33-47
pubmed: 26615981
Neuroimage. 2020 Jul 15;215:116835
pubmed: 32289460
Proc R Soc Lond B Biol Sci. 1982 Dec 22;217(1206):29-35
pubmed: 6131421
Neuroimage. 2020 Oct 15;220:117107
pubmed: 32622984
Neuroimage. 2022 Jul 1;254:119135
pubmed: 35339686
Arch Gen Psychiatry. 1998 Mar;55(3):215-24
pubmed: 9510215
Front Hum Neurosci. 2017 Aug 07;11:393
pubmed: 28824398
Magn Reson Med. 2000 Nov;44(5):713-22
pubmed: 11064406
Magn Reson Med. 2014 Nov;72(5):1366-74
pubmed: 25168861
Acta Neuropathol. 1991;82(4):316-20
pubmed: 1662002
Magn Reson Med. 2018 Jun;79(6):3172-3193
pubmed: 29493816
Elife. 2020 Feb 12;9:
pubmed: 32048987
Magn Reson Med. 2003 Feb;49(2):206-15
pubmed: 12541239
NMR Biomed. 2019 Dec;32(12):e4170
pubmed: 31573745
Neuroimage. 2020 Nov 15;222:117197
pubmed: 32745680
J Magn Reson. 2010 Sep;206(1):41-51
pubmed: 20580294
Magn Reson Med. 2020 Sep;84(3):1564-1578
pubmed: 32022313
NMR Biomed. 2016 Mar;29(3):293-308
pubmed: 26748471
NMR Biomed. 2016 Apr;29(4):400-10
pubmed: 27077155
Neuroimage. 2012 Jul 16;61(4):1000-16
pubmed: 22484410
Neuroimage. 2021 Nov 1;241:118424
pubmed: 34311067
Neuroimage. 2022 Feb 15;247:118833
pubmed: 34929382
Neuroimage. 2021 Feb 15;227:117619
pubmed: 33301942
Magn Reson Med. 2010 Apr;63(4):902-9
pubmed: 20373391
Brain Res. 1992 Dec 11;598(1-2):143-53
pubmed: 1486477
Neuroimage. 2019 Jan 15;185:119-128
pubmed: 30326296
Magn Reson Med. 2021 Aug;86(2):754-764
pubmed: 33755261
NMR Biomed. 2015 Nov;28(11):1489-506
pubmed: 26411743
Magn Reson Med. 2019 Feb;81(2):1247-1264
pubmed: 30229564
Magn Reson Med. 2016 Feb;75(2):688-700
pubmed: 25809657
NMR Biomed. 2008 Feb;21(2):165-74
pubmed: 17492659
J Physiol. 2018 May 1;596(9):1723-1745
pubmed: 29502344
World J Radiol. 2016 Sep 28;8(9):785-798
pubmed: 27721941
Neuroimage. 2010 Jul 15;51(4):1360-6
pubmed: 20350604
F1000Res. 2018 Jul 26;7:
pubmed: 30109024
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):82-9
pubmed: 21995016
Biophys J. 1979 Oct;28(1):133-41
pubmed: 262443
J Magn Reson. 2017 Apr;277:117-130
pubmed: 28282586
J Psychiatry Neurosci. 2007 May;32(3):203-10
pubmed: 17476367