The coordinated regulation of early meiotic stages is dominated by non-coding RNAs and stage-specific transcription in wheat.
isoform switching
long intervening/intergenic non-coding RNA
meiosis
small non-coding RNA
transcriptome
wheat
Journal
The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
revised:
20
01
2023
received:
14
10
2022
accepted:
26
01
2023
medline:
29
3
2023
pubmed:
31
1
2023
entrez:
30
1
2023
Statut:
ppublish
Résumé
Reproductive success hinges on precisely coordinated meiosis, yet our understanding of how structural rearrangements of chromatin and phase transitions during meiosis are transcriptionally regulated is limited. In crop plants, detailed analysis of the meiotic transcriptome could identify regulatory genes and epigenetic regulators that can be targeted to increase recombination rates and broaden genetic variation, as well as provide a resource for comparison among eukaryotes of different taxa to answer outstanding questions about meiosis. We conducted a meiotic stage-specific analysis of messenger RNA (mRNA), small non-coding RNA (sncRNA), and long intervening/intergenic non-coding RNA (lincRNA) in wheat (Triticum aestivum L.) and revealed novel mechanisms of meiotic transcriptional regulation and meiosis-specific transcripts. Amidst general repression of mRNA expression, significant enrichment of ncRNAs was identified during prophase I relative to vegetative cells. The core meiotic transcriptome was comprised of 9309 meiosis-specific transcripts, 48 134 previously unannotated meiotic transcripts, and many known and novel ncRNAs differentially expressed at specific stages. The abundant meiotic sncRNAs controlled the reprogramming of central metabolic pathways by targeting genes involved in photosynthesis, glycolysis, hormone biosynthesis, and cellular homeostasis, and lincRNAs enhanced the expression of nearby genes. Alternative splicing was not evident in this polyploid species, but isoforms were switched at phase transitions. The novel, stage-specific regulatory controls uncovered here challenge the conventional understanding of this crucial biological process and provide a new resource of requisite knowledge for those aiming to directly modulate meiosis to improve crop plants. The wheat meiosis transcriptome dataset can be queried for genes of interest using an eFP browser located at https://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi?dataSource=Wheat_Meiosis.
Substances chimiques
RNA, Messenger
0
RNA, Untranslated
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
209-224Informations de copyright
© 2023 National Research Council Canada and The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. Reproduced with the permission of the Minister of Innovation, Science, and Economic Development.
Références
Ahmad, A., Zhang, Y. & Cao, X.F. (2010) Decoding the epigenetic language of plant development. Molecular Plant, 3, 719-728.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410.
Barakate, A., Orr, J., Schreiber, M., Colas, I., Lewandowska, D., McCallum, N. et al. (2021) Barley anther and meiocyte transcriptome dynamics in meiotic prophase I. Frontiers in Plant Science, 11, 1-24.
Bélanger, S., Pokhrel, S., Czymmek, K. & Meyers, B.C. (2020) Premeiotic, 24-nucleotide reproductive phasiRNAs are abundant in anthers of wheat and barley but not rice and maize. Plant Physiology, 184, 1407-1423.
Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57, 289-300.
Bergero, R., Ellis, P., Haerty, W., Larcombe, L., Macaulay, I., Mehta, T. et al. (2021) Meiosis and beyond - understanding the mechanistic and evolutionary processes shaping the germline genome. Biological Reviews, 96, 822-841.
Boden, S.A., Langridge, P., Spangenberg, G. & Able, J.A. (2009) TaASY1 promotes homologous chromosome interactions and is affected by deletion of Ph1. The Plant Journal, 57, 487-497.
Böhmdorfer, G. & Wierzbicki, A.T. (2015) Control of chromatin structure by long noncoding RNA. Trends in Cell Biology, 25, 623-632.
Bolger, A.M., Lohse, M. & Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114-2120.
Capilla-Perez, L., Solier, V., Portemer, V., Chambon, A., Hurel, A., Guillebaux, A. et al. (2018) The HEM lines: a new library of homozygous Arabidopsis thaliana EMS mutants and its potential to detect meiotic phenotypes. Frontiers in Plant Science, 9, 1-9.
Chelysheva, L., Vezon, D., Chambon, A., Gendrot, G., Pereira, L., Lemhemdi, A. et al. (2012) The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLoS Genetics, 8, e1002799.
Chen, C., Farmer, A.D., Langley, R.J., Mudge, J., Crow, J.A., May, G.D. et al. (2010) Meiosis-specific gene discovery in plants: RNA-seq applied to isolated Arabidopsis male meiocytes. BMC Plant Biology, 10, 280.
Chen, X. (2009) Small RNAs and their roles in plant development. Annual Review of Cell and Developmental Biology, 25, 21-44.
Cheng, Z., Otto, G.M., Powers, E.N., Keskin, A., Mertins, P., Carr, S.A. et al. (2018) Pervasive, coordinated protein-level changes driven by transcript isoform switching during meiosis. Cell, 172, 910-923.
Crismani, W., Baumann, U., Sutton, T., Shirley, N., Webster, T., Spangenberg, G. et al. (2006) Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics, 7, 1-17.
Dai, P., Wang, X., Gou, L.T., Li, Z.T., Wen, Z., Chen, Z.G. et al. (2019) A translation-activating function of MIWI/piRNA during mouse spermiogenesis. Cell, 179, 1566-1581.e16.
Dai, X., Zhuang, Z. & Zhao, P.X. (2018) PsRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Research, 46, W49-W54.
Dickinson, H.G. & Heslop-Harrison, J. (1977) Ribosomes, membranes and organelles during meiosis in angiosperms. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 277, 327-342.
Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S. et al. (2013) STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15-21.
Dukowic-Schulze, S., Sundararajan, A., Mudge, J., Ramaraj, T., Farmer, A.D., Wang, M. et al. (2014) The transcriptome landscape of early maize meiosis. BMC Plant Biology, 14, 118.
Engreitz, J.M., Haines, J.E., Perez, E.M., Munson, G., Chen, J., Kane, M. et al. (2016) Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature, 539, 452-455.
Feng, S., Jacobsen, S.E. & Reik, W. (2010) Epigenetic reprogramming in plant and animal development. Science, 330, 622-627.
Flórez-Zapata, N.M.V., Reyes-Valdés, M.H. & Martínez, O. (2016) Long non-coding RNAs are major contributors to transcriptome changes in sunflower meiocytes with different recombination rates. BMC Genomics, 17, 1-16.
Foissac, S. & Sammeth, M. (2007) ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Research, 35, 297-299.
Fultz, D., Choudury, S.G. & Slotkin, R.K. (2015) Silencing of active transposable elements in plants. Current Opinion in Plant Biology, 27, 67-76.
Geisinger, A., Rodríguez-Casuriaga, R. & Benavente, R. (2021) Transcriptomics of meiosis in the male mouse. Frontiers in Cell and Development Biology, 9, 1-14.
Goh, W.S.S., Falciatori, I., Tam, O.H., Burgess, R., Meikar, O., Kotaja, N. et al. (2015) PiRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes & Development, 29, 1032-1044.
Goldberg, R., Beals, T. & Sanders, P. (1993) Anther development: basic principles and practical applications. Plant Cell, 5, 1217-1229.
Golicz, A.A., Allu, A.D., Li, W., Lohani, N., Singh, M.B. & Bhalla, P.L. (2021) A dynamic intron retention program regulates the expression of several hundred genes during pollen meiosis. Plant Reprod., 34, 225-242.
Gou, L.T., Dai, P., Yang, J.H., Xue, Y., Hu, Y.P., Zhou, Y. et al. (2014) Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Research, 24, 680-700.
Grelon, M., Vezon, D., Gendrot, G. & Pelletier, G. (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. The EMBO Journal, 20, 589-600.
Guo, J.C., Fang, S.S., Wu, Y., Zhang, J.H., Chen, Y., Liu, J. et al. (2019) CNIT: a fast and accurate web tool for identifying protein-coding and long non-coding transcripts based on intrinsic sequence composition. Nucleic Acids Research, 47, W516-W522.
Guo, W., Calixto, C.P.G., Brown, J.W.S. & Zhang, R. (2017) TSIS: an R package to infer alternative splicing isoform switches for time-series data. Bioinformatics, 33, 3308-3310.
Hawley, B.R., Lu, W.T., Wilczynska, A. & Bushell, M. (2017) The emerging role of RNAs in DNA damage repair. Cell Death and Differentiation, 24, 580-587.
He, Y., Wang, C., Higgins, J.D., Yu, J., Zong, J., Lu, P. et al. (2016) MEIOTIC F-BOX is essential for male meiotic DNA double-strand break repair in rice. Plant Cell, 28, 1879-1893.
Higgins, J.D., Sanchez-Moran, E., Armstrong, S.J., Jones, G.H. & Franklin, F.C.H. (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes & Development, 19, 2488-2500.
Hirano, T. (2002) The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes & Development, 16, 399-414.
Huang, J., Wang, C., Wang, H., Lu, P., Zheng, B., Ma, H. et al. (2019) Meiocyte-specific and AtSPO11-1-dependent small RNAs and their association with meiotic gene expression and recombination. Plant Cell, 31, 444-464.
The International Wheat Genome Sequencing Consortium (IWGSC). (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191.
Jeppsson, K., Kanno, T., Shirahige, K. & Sjögren, C. (2014) The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nature Reviews. Molecular Cell Biology, 15, 601-614.
Juneau, K., Palm, C., Miranda, M. & Davis, R.W. (2007) High-density yeast-tiling array reveals previously undiscovered introns and extensive regulation of meiotic splicing. Proceedings of the National Academy of Sciences of the United States of America, 104, 1522-1527.
Kagale, S., Nixon, J., Khedikar, Y., Pasha, A., Provart, N.J., Clarke, W.E. et al. (2016) The developmental transcriptome atlas of the biofuel crop Camelina sativa. The Plant Journal, 88, 879-894.
Kalvari, I., Nawrocki, E.P., Argasinska, J., Quinones-Olvera, N., Finn, R.D., Bateman, A. et al. (2018) Non-coding RNA analysis using the Rfam database. Current Protocols in Bioinformatics, 62, e51.
Kang, Y.J., Yang, D.C., Kong, L., Hou, M., Meng, Y.Q., Wei, L. et al. (2017) CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Research, 45, W12-W16.
Klepikova, A.V., Kasianov, A.S., Gerasimov, E.S., Logacheva, M.D. & Penin, A.A. (2016) A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. The Plant Journal, 88, 1058-1070.
Kuang, Z., Wang, Y., Li, L. & Yang, X. (2019) miRDeep-P2: accurate and fast analysis of the microRNA transcriptome in plants. Bioinformatics, 35, 2521-2522.
Langfelder, P. & Horvath, S. (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10, R25.
Lardenois, A., Liu, Y., Walther, T., Chalmel, F., Evrard, B., Granovskaia, M. et al. (2011) Execution of the meiotic noncoding RNA expression program and the onset of gametogenesis in yeast require the conserved exosome subunit Rrp6. Proceedings of the National Academy of Sciences of the United States of America, 108, 1058-1063.
Li, A., Liu, D., Wu, J., Zhao, X., Hao, M., Geng, S. et al. (2014) mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell, 26, 1878-1900.
Li, B. & Dewey, C.N. (2011) RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics, 12, 323.
Li, H. (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34, 3094-3100.
Lian, J.P., Yang, Y.W., He, R.R., Yang, L., Zhou, Y.F., Lei, M.Q. et al. (2021) Ubiquitin-dependent Argonauteprotein MEL1 degradation is essential for rice sporogenesis and phasiRNA target regulation. Plant Cell, 33, 2685-2700.
Liu, X., Hao, L., Li, D., Zhu, L. & Hu, S. (2015) Long non-coding RNAs and their biological roles in plants. Genomics, Proteomics Bioinformatics, 13, 137-147.
Lunardon, A., Johnson, N.R., Hagerott, E., Phifer, T., Polydore, S., Coruh, C. et al. (2020) Integrated annotations and analyses of small RNA-producing loci from 47 diverse plants. Genome Research, 30, 497-513.
Ma, H. (2006) A molecular portrait of Arabidopsis meiosis. Arabidopsis Book, 4, 1-39.
Martín, A.C., Borrill, P., Higgins, J., Alabdullah, A., Ramírez-González, R.H., Swarbreck, D. et al. (2018) Genome-wide transcription during early wheat meiosis is independent of synapsis, ploidy level, and the Ph1 locus. Frontiers in Plant Science, 871, 1-19.
Martínez, G., Panda, K., Köhler, C. & Slotkin, R.K. (2016) Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nature Plants, 2, 16030.
Mercier, R., Mézard, C., Jenczewski, E., Macaisne, N. & Grelon, M. (2015) The molecular biology of meiosis in plants. Annual Review of Plant Biology, 66, 297-327.
Ørom, U.A., Derrien, T., Beringer, M., Gumireddy, K., Gardini, A., Bussotti, G. et al. (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell, 143, 46-58.
Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T. & Salzberg, S.L. (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33, 290-295.
Rey, M.D., Martín, A.C., Higgins, J., Swarbreck, D., Uauy, C., Shaw, P. et al. (2017) Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. Molecular Breeding, 37, 95.
Schmid, R., Grellscheid, S.N., Ehrmann, I., Dalgliesh, C., Danilenko, M., Paronetto, M.P. et al. (2013) The splicing landscape is globally reprogrammed during male meiosis. Nucleic Acids Research, 41, 10170-10184.
Sears, E.R. (1977) An induced mutant with homoeologous pairing in common wheat. Canadian Journal of Genetics and Cytology, 19, 585-593.
Serra, H., Svačina, R., Baumann, U., Whitford, R., Sutton, T., Bartoš, J. et al. (2021) Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination. Nature Communications, 12, 1-10.
Shunmugam, A.S.K., Bollina, V., Dukowic-Schulze, S., Bhowmik, P.K., Ambrose, C., Higgins, J.D. et al. (2018) MeioCapture: an efficient method for staging and isolation of meiocytes in the prophase I sub-stages of meiosis in wheat. BMC Plant Biology, 18, 1-12.
Springer, N.M., Lisch, D. & Li, Q. (2015) Creating order from chaos: epigenome dynamics in plants with complex genomes. Plant Cell, 28, 314-325.
Stapley, J., Feulner, P.G.D., Johnston, S.E., Santure, A.W. & Smadja, C.M. (2017) Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160455.
Statello, L., Guo, C.J., Chen, L.L. & Huarte, M. (2021) Gene regulation by long non-coding RNAs and its biological functions. Nature Reviews. Molecular Cell Biology, 22, 96-118.
Taylor, D.H., Chu, E.T.J., Spektor, R. & Soloway, P.D. (2015) Long non-coding RNA regulation of reproduction and development. Molecular Reproduction and Development, 82, 932-956.
Tock, A.J., Holland, D.M., Jiang, W., Osman, K., Sanchez-Moran, E., Higgins, J.D. et al. (2021) Crossover-active regions of the wheat genome are distinguished by DMC1, the chromosome axis, H3K27me3, and signatures of adaptation. Genome Research, 31, 1614-1628.
Toufighi, K., Brady, S.M., Austin, R., Ly, E. & Provart, N.J. (2005) The botany array resource: e-Northerns, expression angling, and promoter analyses. The Plant Journal, 43, 153-163.
Trans Decoder. (2018). https://github.com/TransDecoder/TransDecoder [Accessed 5th October 2021].
Tseng, Y., Kole, T.P., Lee, J.S.H., Fedorov, E., Almo, S.C., Schafer, B.W. et al. (2005) How Actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. Biochemical and Biophysical Research Communications, 334, 183-192.
Wagner, G.P., Kin, K. & Lynch, V.J. (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory in Biosciences, 131, 281-285.
Walker, J., Gao, H., Zhang, J., Aldridge, B., Vickers, M., Higgins, J.D. et al. (2018) Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis. Nature Genetics, 50, 130-137.
Wang, K.C., Yang, Y.W., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y. et al. (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472, 120-126.
Wang, L., Xu, Z., Khawar, M.B., Liu, C. & Li, W. (2017) The histone codes for meiosis. Reproduction, 154, R65-R79.
Wang, Y., Cheng, Z. & Ma, H. (2014) Meiosis: interactions between homologous chromosomes. In: Assmann, S. & Liu, B. (Eds.), Cell Biology. New York, NY: Springer, pp. 1-34.
Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V. & Provart, N.J. (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One, 2, 1-12.
Yang, H., Lu, P., Wang, Y. & Ma, H. (2011) The transcriptome landscape of Arabidopsis male meiocytes from high-throughput sequencing: the complexity and evolution of the meiotic process. The Plant Journal, 65, 503-516.
Yates, A.D., Achuthan, P., Akanni, W., Allen, J., Allen, J., Alvarez-Jarreta, J. et al. (2020) Ensembl 2020. Nucleic Acids Research, 48, D682-D688.
Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O. et al. (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10, 1-10.
Zickler, D. & Kleckner, N. (2015) Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harbor Perspectives in Biology, 7, a016626.