Mycelial nutrient transfer promotes bacterial co-metabolic organochlorine pesticide degradation in nutrient-deprived environments.
Journal
The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
10
10
2022
accepted:
13
01
2023
revised:
10
01
2023
pubmed:
28
1
2023
medline:
24
3
2023
entrez:
27
1
2023
Statut:
ppublish
Résumé
Biotransformation of soil organochlorine pesticides (OCP) is often impeded by a lack of nutrients relevant for bacterial growth and/or co-metabolic OCP biotransformation. By providing space-filling mycelia, fungi promote contaminant biodegradation by facilitating bacterial dispersal and the mobilization and release of nutrients in the mycosphere. We here tested whether mycelial nutrient transfer from nutrient-rich to nutrient-deprived areas facilitates bacterial OCP degradation in a nutrient-deficient habitat. The legacy pesticide hexachlorocyclohexane (HCH), a non-HCH-degrading fungus (Fusarium equiseti K3), and a co-metabolically HCH-degrading bacterium (Sphingobium sp. S8) isolated from the same HCH-contaminated soil were used in spatially structured model ecosystems. Using
Identifiants
pubmed: 36707614
doi: 10.1038/s41396-023-01371-7
pii: 10.1038/s41396-023-01371-7
pmc: PMC10030463
doi:
Substances chimiques
Pesticides
0
Hexachlorocyclohexane
59NEE7PCAB
Hydrocarbons, Chlorinated
0
Bacterial Proteins
0
Soil
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
570-578Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023. The Author(s).
Références
Mohn WW, Mertens B, Neufeld JD, Verstraete W, de Lorenzo V. Distribution and phylogeny of hexachlorocyclohexane-degrading bacteria in soils from Spain. Environ Microbiol. 2006;8:60–8.
pubmed: 16343322
doi: 10.1111/j.1462-2920.2005.00865.x
Sharma P, Raina V, Kumari R, Malhotra S, Dogra C, Kumari H, et al. Haloalkane Dehalogenase LinB is responsible for β- and δ-hexachlorocyclohexane transformation in Sphingobium indicum B90A. Appl Environ Microbiol. 2006;72:5720–7.
pubmed: 16957186
pmcid: 1563659
doi: 10.1128/AEM.00192-06
Lal R, Dogra C, Malhotra S, Sharma P, Pal R. Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends Biotechnol. 2006;24:121–30.
pubmed: 16473421
doi: 10.1016/j.tibtech.2006.01.005
Singh A, Lal R. Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol. 2009;59:162–6.
pubmed: 19126742
doi: 10.1099/ijs.0.65712-0
Singh BK, Kuhad RC. Biodegradation of lindane (γ-hexachlorocyclohexane) by the white-rot fungus Trametes hirsutus. Lett Appl Microbiol. 1999;28:238–41.
pubmed: 10196776
doi: 10.1046/j.1365-2672.1999.00508.x
Kumar D, Pannu R. Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: a review. Bioresour Bioprocess. 2018;5:29.
doi: 10.1186/s40643-018-0213-9
Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, et al. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev. 2010;74:58–80.
pubmed: 20197499
pmcid: 2832351
doi: 10.1128/MMBR.00029-09
Nayyar N, Lal R. Hexachlorocyclohexane contamination and solutions: Brief history and beyond. J Bioremed Biodeg. 2016;07:338.
Bumpus JA, Tien M, Wright D, Aust SD. Oxidation of persistent environmental pollutants by a white rot fungus. Science. 1985;228:1434–6.
pubmed: 3925550
doi: 10.1126/science.3925550
Phillips TM, Seech AG, Lee H, Trevors JT. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegr. 2005;16:363–92.
doi: 10.1007/s10532-004-2413-6
Dogra C, Raina V, Pal R, Suar M, Lal S, Gartemann KH, et al. Organization of lin genes and IS6100 among different strains of hexachlorocyclohexane-degrading Sphingomonas paucimobilis: Evidence for horizontal gene transfer. J Bacteriol. 2004;186:2225–35.
pubmed: 15060023
pmcid: 412113
doi: 10.1128/JB.186.8.2225-2235.2004
Pal R, Bala S, Dadhwal M, Kumar M, Dhingra G, Prakash O, et al. Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol. 2005;55:1965–72.
pubmed: 16166696
doi: 10.1099/ijs.0.63201-0
Rijnaarts HHM, Bachmann A, Jumelet JC, Zehnder AJB. Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of. alpha-hexachlorocyclohexane in a contaminated calcareous soil. Environ Sci Technol. 1990;24:1349–54.
doi: 10.1021/es00079a008
Harms H, Schlosser D, Wick LY. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol. 2011;9:177–92.
pubmed: 21297669
doi: 10.1038/nrmicro2519
Wick LY Bioavailability as a microbial system property: Lessons learned from biodegradation in the mycosphere. In: Ortega-Calvo JJ, Parsons JR, (eds). Bioavailability of organic chemicals in soil and sediment. Cham: Springer International Publishing; 2020 p. 267–89.
Jennings DH. Translocation of Solutes in fungi. Biol Rev. 1987;62:215–43.
doi: 10.1111/j.1469-185X.1987.tb00664.x
Nazir R, Warmink JA, Boersma H, van Elsas JD. Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol. 2010;71:169–85.
pubmed: 20002182
doi: 10.1111/j.1574-6941.2009.00807.x
Worrich A, Stryhanyuk H, Musat N, König S, Banitz T, Centler F, et al. Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nat Commun. 2017;8:15472.
pubmed: 28589950
pmcid: 5467244
doi: 10.1038/ncomms15472
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42:335–52.
pubmed: 29471481
doi: 10.1093/femsre/fuy008
Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY. Taking the fungal highway: Mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol. 2005;39:4640–6.
pubmed: 16047804
doi: 10.1021/es047979z
Wick LY, Furuno S, Harms H Fungi as transport vectors for contaminants and contaminant-degrading bacteria. In: Timmis KN, (eds). Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 1555–61.
Espinosa-Ortiz EJ, Rene ER, Gerlach R. Potential use of fungal-bacterial co-cultures for the removal of organic pollutants. Crit Rev Biotechnol. 2021;0:1–23.
Haq IU, Zhang M, Yang P, van Elsas JD The interactions of bacteria with fungi in soil. In: Adv Appl Microbiol. Elsevier; 2014. p. 185–215.
Furuno S, Foss S, Wild E, Jones KC, Semple KT, Harms H, et al. Mycelia promote active transport and spatial dispersion of polycyclic aromatic hydrocarbons. Environ Sci Technol. 2012;46:5463–70.
pubmed: 22559873
doi: 10.1021/es300810b
Schamfuß S, Neu TR, van der Meer JR, Tecon R, Harms H, Wick LY. Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria. Environ Sci Technol. 2013;47:6908–15.
pubmed: 23452287
doi: 10.1021/es304378d
Schamfuß S, Neu TR, Harms H, Wick LY. A Whole Cell Bioreporter approach to assess transport and bioavailability of organic contaminants in water unsaturated systems. J Vis Exp. 2014;24:52334.
You X, Kallies R, Kühn I, Schmidt M, Harms H, Chatzinotas A, et al. Phage co-transport with hyphal-riding bacteria fuels bacterial invasion in a water-unsaturated microbial model system. ISME J. 2022;16:1275–83.
pubmed: 34903848
doi: 10.1038/s41396-021-01155-x
Wick LY, Remer R, Würz B, Reichenbach J, Braun S, Schäfer F, et al. Effect of fungal hyphae on the access of bacteria to phenanthrene in soil. Environ Sci Technol. 2007;41:500–5.
pubmed: 17310713
doi: 10.1021/es061407s
Boer W, de, Folman LB, Summerbell RC, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29:795–811.
pubmed: 16102603
doi: 10.1016/j.femsre.2004.11.005
Frey‐Klett P, Garbaye J, Tarkka M. The mycorrhiza helper bacteria revisited. N. Phytol. 2007;176:22–36.
doi: 10.1111/j.1469-8137.2007.02191.x
Hazen TC Cometabolic Bioremediation. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer; 2010. p. 2505–14.
Jehmlich N, Vogt C, Lünsmann V, Richnow HH, von Bergen M. Protein-SIP in environmental studies. Curr Opin Biotechnol. 2016;41:26–33.
pubmed: 27116035
doi: 10.1016/j.copbio.2016.04.010
Sachsenberg T, Herbst FA, Taubert M, Kermer R, Jehmlich N, von Bergen M, et al. MetaProSIP: automated inference of stable isotope incorporation rates in proteins for functional metaproteomics. J Proteome Res. 2015;14:619–27.
pubmed: 25412983
doi: 10.1021/pr500245w
Taubert M, Jehmlich N, Vogt C, Richnow HH, Schmidt F, von Bergen M, et al. Time resolved protein-based stable isotope probing (Protein-SIP) analysis allows quantification of induced proteins in substrate shift experiments. Proteomics 2011;11:2265–74.
pubmed: 21598395
doi: 10.1002/pmic.201000788
Lünsmann V, Kappelmeyer U, Benndorf R, Martinez-Lavanchy PM, Taubert A, Adrian L, et al. In situ protein-SIP highlights Burkholderiaceae as key players degrading toluene by para ring hydroxylation in a constructed wetland model: Protein-SIP in a toluene-degrading wetland. Environ Microbiol. 2016;18:1176–86.
pubmed: 26616584
doi: 10.1111/1462-2920.13133
Khan N, Toscan RB, Lunayo A, Wamalwa B, Muge E, Mulaa FJ, et al. Draft genome sequence of Fusarium equiseti K3, a fungal species isolated from hexachlorocyclohexane-contaminated soil. Microbiol Resour Announc. 2021;10:e00885–21.
pubmed: 34817210
pmcid: 8612084
doi: 10.1128/MRA.00885-21
Khan N, Brizola Toscan R, Lunayo A, Wamalwa B, Muge E, Mulaa FJ, et al. Draft genome sequences of two Sphingobium species associated with hexachlorocyclohexane (HCH) degradation isolated from an HCH-Contaminated Soil. Microbiol Resour Announc. 2022;11:e00886–21.
pubmed: 35175098
pmcid: 8928764
doi: 10.1128/mra.00886-21
Yang CH, Menge JA, Cooksey DA. Mutations Affecting Hyphal Colonization and Pyoverdine Production in Pseudomonads Antagonistic toward Phytophthora parasitica. Appl Environ Microbiol. 1994;9:473–81.
Senoo K, Wada H. Isolation and identification of an aerobic γ-HCH-decomposing bacterium from soil. Soil Sci Plant Nutr. 1989;35:79–87.
doi: 10.1080/00380768.1989.10434739
Jehmlich N, Schmidt F, Taubert M, Seifert J, Bastida F, von Bergen M, et al. Protein-based stable isotope probing. Nat Protoc. 2010;5:1957–66.
pubmed: 21127489
doi: 10.1038/nprot.2010.166
Graves S, Dorai-Raj HPP and LS with help from S. multcompView: Visualizations of paired comparisons. 2019. Available from: https://CRAN.R-project.org/package=multcompView
Wickham H, François R, Henry L, Müller K, RStudio. dplyr: A Grammar of data manipulation. 2022. Available from: https://CRAN.R-project.org/package=dplyr
ggplot2: Create elegant data visualisations using the grammar of graphics—ggplot2-package. Available from: https://ggplot2.tidyverse.org/reference/ggplot2-package.html
Schramm FD, Heinrich K, Thüring M, Bernhardt J, Jonas K. An essential regulatory function of the DnaK chaperone dictates the decision between proliferation and maintenance in Caulobacter crescentus. PLoS Genet. 2017;13:e1007148.
pubmed: 29281627
pmcid: 5760092
doi: 10.1371/journal.pgen.1007148
Li SX, Wu HT, Liu YT, Jiang YY, Zhang YS, Liu WD, et al. The F1Fo-ATP synthase β subunit is required for Candida albicans pathogenicity due to its role in carbon flexibility. Front Microbiol. 2018;9:1025.
pubmed: 29875745
pmcid: 5974098
doi: 10.3389/fmicb.2018.01025
Godlewska R, Wiśniewska K, Pietras Z, Jagusztyn-Krynicka EK. Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis. FEMS Microbiol Lett. 2009;298:1–11.
pubmed: 19519769
doi: 10.1111/j.1574-6968.2009.01659.x
Taubert M, Vogt C, Wubet T, Kleinsteuber S, Tarkka MT, Harms H, et al. Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME J. 2012;6:2291–301.
pubmed: 22791237
pmcid: 3504967
doi: 10.1038/ismej.2012.68
Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J. Rules of engagement: Interspecies interactions that regulate microbial communities. Annu Rev Microbiol. 2008;62:375–401.
pubmed: 18544040
doi: 10.1146/annurev.micro.030608.101423
Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C. Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev. 2013;37:384–406.
pubmed: 23480449
doi: 10.1111/1574-6976.12019
Van Hees PAW, Rosling A, Essén S, Godbold DL, Jones DL, Finlay RD. Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. N Phytol. 2006;169:367–78.
doi: 10.1111/j.1469-8137.2005.01600.x
Sun YP, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay R. Exudation-reabsorption in a mycorrhizal fungus, the dynamic interface for interaction with soil and soil microorganisms. Mycorrhiza 1999;9:137–44.
doi: 10.1007/s005720050298
Leveau JHJ, Preston GM. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. N Phytol. 2008;177:859–76.
doi: 10.1111/j.1469-8137.2007.02325.x
Bassler BL, Losick R. Bacterially speaking. Cell 2006;125:237–46.
pubmed: 16630813
doi: 10.1016/j.cell.2006.04.001
Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc Natl Acad Sci. 2008;105:18188–93.
pubmed: 19011107
pmcid: 2587551
doi: 10.1073/pnas.0807935105
Nayyar N, Sangwan N, Kohli P, Verma H, Kumar R, Negi V, et al. Hexachlorocyclohexane: persistence, toxicity and decontamination. Rev Environ Health. 2014;29:49–52.
pubmed: 24622782
doi: 10.1515/reveh-2014-0015
Willett KL, Ulrich EM, Hites RA. Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol. 1998;32:2197–207.
doi: 10.1021/es9708530
Ellegaard-Jensen L, Knudsen BE, Johansen A, Albers CN, Aamand J, Rosendahl S. Fungal-bacterial consortia increase diuron degradation in water-unsaturated systems. Sci Total Environ. 2014;466–467:699–705.
pubmed: 23973535
doi: 10.1016/j.scitotenv.2013.07.095
Knudsen BE, Ellegaard-Jensen L, Albers CN, Rosendahl S, Aamand J. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM). Environ Pollut. 2013;181:122–7.
pubmed: 23850628
doi: 10.1016/j.envpol.2013.06.013
Saez JM, Alvarez A, Fuentes MS, Amoroso MJ, Benimeli CS An Overview on Microbial Degradation of Lindane. In: Singh SN, (eds). Microbe-induced degradation of pesticides. Cham: Springer International Publishing; 2017. p. 191–212.
Nzila A. Update on the cometabolism of organic pollutants by bacteria. Environ Pollut. 2013;178:474–82.
pubmed: 23570949
doi: 10.1016/j.envpol.2013.03.042
Benimeli CS, González AJ, Chaile AP, Amoroso MJ. Temperature and pH effect on lindane removal by Streptomyces sp. M7 in soil extract. J Basic Microbiol. 2007;47:468–73.
pubmed: 18072247
doi: 10.1002/jobm.200700242
Álvarez A, Yañez ML, Benimeli CS, Amoroso MJ. Maize plants (Zea mays) root exudates enhance lindane removal by native Streptomyces strains. Int Biodeterior Biodegrad. 2012;66:14–8.
doi: 10.1016/j.ibiod.2011.10.001
Boltner D, Moreno-Morillas S, Ramos JL. 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol. 2005;7:1329–38.
pubmed: 16104856
doi: 10.1111/j.1462-5822.2005.00820.x