Down-conversion of a single photon as a probe of many-body localization.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
01 2023
Historique:
received: 05 04 2022
accepted: 01 12 2022
entrez: 25 1 2023
pubmed: 26 1 2023
medline: 28 1 2023
Statut: ppublish

Résumé

Decay of a particle into more particles is a ubiquitous phenomenon to interacting quantum systems, taking place in colliders, nuclear reactors or solids. In a nonlinear medium, even a single photon would decay by down-converting (splitting) into lower-frequency photons with the same total energy

Identifiants

pubmed: 36697866
doi: 10.1038/s41586-022-05615-y
pii: 10.1038/s41586-022-05615-y
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

650-655

Subventions

Organisme : US Department of Energy
ID : DE-SC0020160
Organisme : US Army
ID : W911NF-15-1-0397

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Klyshko, D. Scattering of light in a medium with nonlinear polarizability. Sov. Phys. JETP 28, 522–526 (1969).
Altshuler, B. L., Gefen, Y., Kamenev, A. & Levitov, L. S. Quasiparticle lifetime in a finite system: a nonperturbative approach. Phys. Rev. Lett. 78, 2803–2806 (1997).
doi: 10.1103/PhysRevLett.78.2803
Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).
doi: 10.1126/science.aaa7432
Smith, J. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016).
doi: 10.1038/nphys3783
Roushan, P. et al. Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science 358, 1175–1179 (2017).
doi: 10.1126/science.aao1401
Lukin, A. et al. Probing entanglement in a many-body–localized system. Science 364, 256–260 (2019).
doi: 10.1126/science.aau0818
Bluvstein, D. et al. Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science 371, 1355–1359 (2021).
doi: 10.1126/science.abg2530
Morong, W. et al. Observation of Stark many-body localization without disorder. Nature 599, 393–398 (2021).
doi: 10.1038/s41586-021-03988-0
Guo, Q. et al. Observation of energy-resolved many-body localization. Nat. Phys. 17, 234–239 (2021).
doi: 10.1038/s41567-020-1035-1
Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).
doi: 10.1103/PhysRev.109.1492
Gornyi, I. V., Mirlin, A. D. & Polyakov, D. G. Interacting electrons in disordered wires: Anderson localization and low-t transport. Phys. Rev. Lett. 95, 206603 (2005).
doi: 10.1103/PhysRevLett.95.206603
Basko, D., Aleiner, I. & Altshuler, B. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).
doi: 10.1016/j.aop.2005.11.014
Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Possible experimental manifestations of the many-body localization. Phys. Rev. B 76, 052203 (2007).
doi: 10.1103/PhysRevB.76.052203
Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007).
doi: 10.1103/PhysRevB.75.155111
Serbyn, M., Papić, Z. & Abanin, D. A. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201 (2013).
doi: 10.1103/PhysRevLett.111.127201
Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014).
doi: 10.1103/PhysRevB.90.174202
Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).
doi: 10.1146/annurev-conmatphys-031214-014726
Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).
doi: 10.1103/RevModPhys.91.021001
Choi, J.-Y. et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016).
doi: 10.1126/science.aaf8834
Xu, K. et al. Emulating many-body localization with a superconducting quantum processor. Phys. Rev. Lett. 120, 050507 (2018).
doi: 10.1103/PhysRevLett.120.050507
Mirlin, A. D. Statistics of energy levels and eigenfunctions in disordered systems. Phys. Rep. 326, 259–382 (2000).
doi: 10.1016/S0370-1573(99)00091-5
Serbyn, M. & Moore, J. E. Spectral statistics across the many-body localization transition. Phys. Rev. B 93, 041424 (2016).
doi: 10.1103/PhysRevB.93.041424
Nandkishore, R., Gopalakrishnan, S. & Huse, D. A. Spectral features of a many-body-localized system weakly coupled to a bath. Phys. Rev. B 90, 064203 (2014).
doi: 10.1103/PhysRevB.90.064203
Johri, S., Nandkishore, R. & Bhatt, R. N. Many-body localization in imperfectly isolated quantum systems. Phys. Rev. Lett. 114, 117401 (2015).
doi: 10.1103/PhysRevLett.114.117401
Folk, J., Marcus, C. & Harris, J.Jr Decoherence in nearly isolated quantum dots. Phys. Rev. Lett. 87, 206802 (2001).
doi: 10.1103/PhysRevLett.87.206802
Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: single Cooper-pair circuit free of charge offsets. Science 326, 113–116 (2009).
doi: 10.1126/science.1175552
Meiser, D. & Meystre, P. Superstrong coupling regime of cavity quantum electrodynamics. Phys. Rev. A 74, 065801 (2006).
doi: 10.1103/PhysRevA.74.065801
Sundaresan, N. M. et al. Beyond strong coupling in a multimode cavity. Phys. Rev. X 5, 021035 (2015).
Martínez, J. P. et al. A tunable Josephson platform to explore many-body quantum optics in circuit-QED. npj Quantum Inf. 5, 19 (2019).
doi: 10.1038/s41534-018-0104-0
Kuzmin, R., Mehta, N., Grabon, N., Mencia, R. & Manucharyan, V. Superstrong coupling in circuit quantum electrodynamics. npj Quantum Inf. 5, 20 (2019).
doi: 10.1038/s41534-019-0134-2
Mehta, N., Ciuti, C., Kuzmin, R. & Manucharyan, V. E. Theory of strong down-conversion in multi-mode cavity and circuit QED. Preprint at https://arxiv.org/abs/2210.14681 (2022).
Kuzmin, R. et al. Quantum electrodynamics of a superconductor–insulator phase transition. Nat. Phys. 15, 930–934 (2019).
doi: 10.1038/s41567-019-0553-1
Nigg, S. E. et al. Black-box superconducting circuit quantization. Phys. Rev. Lett. 108, 240502 (2012).
doi: 10.1103/PhysRevLett.108.240502
Kuzmin, R. et al. Inelastic scattering of a photon by a quantum phase slip. Phys. Rev. Lett. 126, 197701 (2021).
doi: 10.1103/PhysRevLett.126.197701
Kuzmin, R., Mehta, N., Grabon, N. & Manucharyan, V. E. Tuning the inductance of Josephson junction arrays without SQUIDs. Preprint at https://arxiv.org/abs/2210.12119 (2022).
Naik, R. et al. Random access quantum information processors using multimode circuit quantum electrodynamics. Nat. Commun. 8, 1904 (2017).
doi: 10.1038/s41467-017-02046-6

Auteurs

Nitish Mehta (N)

Department of Physics, University of Maryland, College Park, MD, USA.

Roman Kuzmin (R)

Department of Physics, University of Maryland, College Park, MD, USA.
Department of Physics, University of Wisconsin-Madison, Madison, WI, USA.

Cristiano Ciuti (C)

Université Paris Cité, CNRS, Matériaux et Phénomènes Quantiques, Paris, France.

Vladimir E Manucharyan (VE)

Department of Physics, University of Maryland, College Park, MD, USA. vladimir.manucharyan@epfl.ch.
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. vladimir.manucharyan@epfl.ch.

Classifications MeSH