Down-conversion of a single photon as a probe of many-body localization.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
01 2023
01 2023
Historique:
received:
05
04
2022
accepted:
01
12
2022
entrez:
25
1
2023
pubmed:
26
1
2023
medline:
28
1
2023
Statut:
ppublish
Résumé
Decay of a particle into more particles is a ubiquitous phenomenon to interacting quantum systems, taking place in colliders, nuclear reactors or solids. In a nonlinear medium, even a single photon would decay by down-converting (splitting) into lower-frequency photons with the same total energy
Identifiants
pubmed: 36697866
doi: 10.1038/s41586-022-05615-y
pii: 10.1038/s41586-022-05615-y
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
650-655Subventions
Organisme : US Department of Energy
ID : DE-SC0020160
Organisme : US Army
ID : W911NF-15-1-0397
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Klyshko, D. Scattering of light in a medium with nonlinear polarizability. Sov. Phys. JETP 28, 522–526 (1969).
Altshuler, B. L., Gefen, Y., Kamenev, A. & Levitov, L. S. Quasiparticle lifetime in a finite system: a nonperturbative approach. Phys. Rev. Lett. 78, 2803–2806 (1997).
doi: 10.1103/PhysRevLett.78.2803
Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).
doi: 10.1126/science.aaa7432
Smith, J. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016).
doi: 10.1038/nphys3783
Roushan, P. et al. Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science 358, 1175–1179 (2017).
doi: 10.1126/science.aao1401
Lukin, A. et al. Probing entanglement in a many-body–localized system. Science 364, 256–260 (2019).
doi: 10.1126/science.aau0818
Bluvstein, D. et al. Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science 371, 1355–1359 (2021).
doi: 10.1126/science.abg2530
Morong, W. et al. Observation of Stark many-body localization without disorder. Nature 599, 393–398 (2021).
doi: 10.1038/s41586-021-03988-0
Guo, Q. et al. Observation of energy-resolved many-body localization. Nat. Phys. 17, 234–239 (2021).
doi: 10.1038/s41567-020-1035-1
Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).
doi: 10.1103/PhysRev.109.1492
Gornyi, I. V., Mirlin, A. D. & Polyakov, D. G. Interacting electrons in disordered wires: Anderson localization and low-t transport. Phys. Rev. Lett. 95, 206603 (2005).
doi: 10.1103/PhysRevLett.95.206603
Basko, D., Aleiner, I. & Altshuler, B. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).
doi: 10.1016/j.aop.2005.11.014
Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Possible experimental manifestations of the many-body localization. Phys. Rev. B 76, 052203 (2007).
doi: 10.1103/PhysRevB.76.052203
Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007).
doi: 10.1103/PhysRevB.75.155111
Serbyn, M., Papić, Z. & Abanin, D. A. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201 (2013).
doi: 10.1103/PhysRevLett.111.127201
Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014).
doi: 10.1103/PhysRevB.90.174202
Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).
doi: 10.1146/annurev-conmatphys-031214-014726
Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).
doi: 10.1103/RevModPhys.91.021001
Choi, J.-Y. et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016).
doi: 10.1126/science.aaf8834
Xu, K. et al. Emulating many-body localization with a superconducting quantum processor. Phys. Rev. Lett. 120, 050507 (2018).
doi: 10.1103/PhysRevLett.120.050507
Mirlin, A. D. Statistics of energy levels and eigenfunctions in disordered systems. Phys. Rep. 326, 259–382 (2000).
doi: 10.1016/S0370-1573(99)00091-5
Serbyn, M. & Moore, J. E. Spectral statistics across the many-body localization transition. Phys. Rev. B 93, 041424 (2016).
doi: 10.1103/PhysRevB.93.041424
Nandkishore, R., Gopalakrishnan, S. & Huse, D. A. Spectral features of a many-body-localized system weakly coupled to a bath. Phys. Rev. B 90, 064203 (2014).
doi: 10.1103/PhysRevB.90.064203
Johri, S., Nandkishore, R. & Bhatt, R. N. Many-body localization in imperfectly isolated quantum systems. Phys. Rev. Lett. 114, 117401 (2015).
doi: 10.1103/PhysRevLett.114.117401
Folk, J., Marcus, C. & Harris, J.Jr Decoherence in nearly isolated quantum dots. Phys. Rev. Lett. 87, 206802 (2001).
doi: 10.1103/PhysRevLett.87.206802
Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: single Cooper-pair circuit free of charge offsets. Science 326, 113–116 (2009).
doi: 10.1126/science.1175552
Meiser, D. & Meystre, P. Superstrong coupling regime of cavity quantum electrodynamics. Phys. Rev. A 74, 065801 (2006).
doi: 10.1103/PhysRevA.74.065801
Sundaresan, N. M. et al. Beyond strong coupling in a multimode cavity. Phys. Rev. X 5, 021035 (2015).
Martínez, J. P. et al. A tunable Josephson platform to explore many-body quantum optics in circuit-QED. npj Quantum Inf. 5, 19 (2019).
doi: 10.1038/s41534-018-0104-0
Kuzmin, R., Mehta, N., Grabon, N., Mencia, R. & Manucharyan, V. Superstrong coupling in circuit quantum electrodynamics. npj Quantum Inf. 5, 20 (2019).
doi: 10.1038/s41534-019-0134-2
Mehta, N., Ciuti, C., Kuzmin, R. & Manucharyan, V. E. Theory of strong down-conversion in multi-mode cavity and circuit QED. Preprint at https://arxiv.org/abs/2210.14681 (2022).
Kuzmin, R. et al. Quantum electrodynamics of a superconductor–insulator phase transition. Nat. Phys. 15, 930–934 (2019).
doi: 10.1038/s41567-019-0553-1
Nigg, S. E. et al. Black-box superconducting circuit quantization. Phys. Rev. Lett. 108, 240502 (2012).
doi: 10.1103/PhysRevLett.108.240502
Kuzmin, R. et al. Inelastic scattering of a photon by a quantum phase slip. Phys. Rev. Lett. 126, 197701 (2021).
doi: 10.1103/PhysRevLett.126.197701
Kuzmin, R., Mehta, N., Grabon, N. & Manucharyan, V. E. Tuning the inductance of Josephson junction arrays without SQUIDs. Preprint at https://arxiv.org/abs/2210.12119 (2022).
Naik, R. et al. Random access quantum information processors using multimode circuit quantum electrodynamics. Nat. Commun. 8, 1904 (2017).
doi: 10.1038/s41467-017-02046-6