Atomically Precise Distorted Nanographenes: The Effect of Different Edge Functionalization on the Photophysical Properties down to the Femtosecond Scale.
atomically precise nanographenes
distorted hexa-peri-hexabenzocoronene derivatives
fluorescent nanomaterials
optical properties
Journal
Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929
Informations de publication
Date de publication:
15 Jan 2023
15 Jan 2023
Historique:
received:
20
12
2022
revised:
10
01
2023
accepted:
12
01
2023
entrez:
21
1
2023
pubmed:
22
1
2023
medline:
22
1
2023
Statut:
epublish
Résumé
Nanographenes (NGs) have been attracting widespread interest since they combine peculiar properties of graphene with molecular features, such as bright visible photoluminescence. However, our understanding of the fundamental properties of NGs is still hampered by the high degree of heterogeneity usually characterizing most of these materials. In this context, NGs obtained by atomically precise synthesis routes represent optimal benchmarks to unambiguously relate their properties to well-defined structures. Here we investigate in deep detail the optical response of three curved hexa-
Identifiants
pubmed: 36676571
pii: ma16020835
doi: 10.3390/ma16020835
pmc: PMC9867459
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
J Am Chem Soc. 2012 Jul 25;134(29):12168-79
pubmed: 22716095
Nat Commun. 2017 Sep 21;8(1):633
pubmed: 28935943
Chem Sci. 2022 Jul 19;13(35):10267-10272
pubmed: 36277627
Chem Soc Rev. 2013 Jul 21;42(14):6113-27
pubmed: 23628866
J Am Chem Soc. 2004 Apr 14;126(14):4641-5
pubmed: 15070380
Chem Sci. 2019 Aug 9;10(39):9038-9041
pubmed: 31762982
Angew Chem Int Ed Engl. 2012 Jul 27;51(31):7640-54
pubmed: 22777811
Chemphyschem. 2022 Nov 15;:e202200465
pubmed: 36377417
Nanoscale. 2013 May 21;5(10):4015-39
pubmed: 23579482
Nanoscale. 2021 Jan 21;13(2):801-809
pubmed: 33410836
J Am Chem Soc. 2017 Mar 15;139(10):3635-3638
pubmed: 28248492
Molecules. 2021 Oct 19;26(20):
pubmed: 34684887
J Am Chem Soc. 2019 May 15;141(19):7726-7730
pubmed: 31046260
Chem Commun (Camb). 2018 Jun 19;54(50):6705-6718
pubmed: 29799051
Chem Asian J. 2019 May 15;14(10):1703-1707
pubmed: 30775845
Chem Sci. 2018 Dec 19;10(8):2326-2330
pubmed: 30881659
Nat Nanotechnol. 2008 Jul;3(7):397-401
pubmed: 18654562
Nat Chem. 2013 Sep;5(9):739-44
pubmed: 23965674
J Am Chem Soc. 2017 Jul 19;139(28):9483-9486
pubmed: 28650622
Nature. 2009 Apr 16;458(7240):872-6
pubmed: 19370030
J Am Chem Soc. 2010 May 5;132(17):5944-5
pubmed: 20377260
J Am Chem Soc. 2016 Jul 27;138(29):9021-4
pubmed: 27374883
J Am Chem Soc. 2020 Oct 28;142(43):18293-18298
pubmed: 33078947
Phys Chem Chem Phys. 2019 Aug 21;21(31):16981-16988
pubmed: 31342018
Angew Chem Int Ed Engl. 2021 Sep 27;60(40):22051-22056
pubmed: 34329498
Chem Sci. 2017 Feb 1;8(2):1068-1074
pubmed: 28451246
ACS Nano. 2013 Dec 23;7(12):10654-61
pubmed: 24251867
Chem Rev. 2017 Feb 22;117(4):3479-3716
pubmed: 27258218
Photosynth Res. 2022 Feb;151(2):163-184
pubmed: 33963981
Chem Soc Rev. 2015 Sep 21;44(18):6616-43
pubmed: 26186682
Nanoscale. 2016 Apr 21;8(15):7794-807
pubmed: 27030656
J Am Chem Soc. 2016 Apr 13;138(14):4726-9
pubmed: 27007058
J Am Chem Soc. 2004 Jun 30;126(25):7794-5
pubmed: 15212524
J Am Chem Soc. 2018 Jun 27;140(25):7803-7809
pubmed: 29779378