Waste Polyurethane Foams as Biomass Carriers in the Treatment Process of Domestic Sewage with Increased Ammonium Nitrogen Content.
biomass carrier
domestic wastewater
microbial community
polyurethane foams
Journal
Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929
Informations de publication
Date de publication:
09 Jan 2023
09 Jan 2023
Historique:
received:
23
11
2022
revised:
25
12
2022
accepted:
04
01
2023
entrez:
21
1
2023
pubmed:
22
1
2023
medline:
22
1
2023
Statut:
epublish
Résumé
In order to understand the mechanisms of microbial growth on waste polyurethane sponge materials, their effectiveness as biomass carriers in domestic sewage with increased ammonium nitrogen content treatment was assessed. Comparative experiments were carried out in microreactors under steady conditions of batch culture, which allowed for an assessment of different carriers, in the form of flexible foams, rigid foams, and flexible foams placed in full casings. In the studies conducted in continuous cultures, biomass carriers selected in batch culture were used as fillings in the column model. The structure of the microbial community inhabiting the spongy material was determined and the pollutant-removing process from real domestic sewage was assessed. Analyzes using the Illumina sequencing technique allowed for demonstrating that
Identifiants
pubmed: 36676355
pii: ma16020619
doi: 10.3390/ma16020619
pmc: PMC9862140
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : University of Agriculture in Krakow
ID : Commissioned research
Références
Pol J Microbiol. 2020 Sep;69(1):99-108
pubmed: 32189483
Waste Manag. 2012 Sep;32(9):1651-8
pubmed: 22595839
Appl Environ Microbiol. 1996 Feb;62(2):340-6
pubmed: 8593039
Appl Microbiol Biotechnol. 2018 Dec;102(24):10345-10352
pubmed: 30343428
Appl Environ Microbiol. 1999 Jul;65(7):3248-50
pubmed: 10388731
Bioresour Technol. 2021 Mar;324:124668
pubmed: 33453520
Front Microbiol. 2012 Dec 19;3:417
pubmed: 23267351
Nature. 2012 Aug 2;488(7409):91-5
pubmed: 22859207
Bioresour Technol. 2014 Nov;171:1-9
pubmed: 25171329
J Environ Manage. 2005 Jan;74(2):187-94
pubmed: 15627471
Mar Pollut Bull. 2017 Sep 15;122(1-2):156-160
pubmed: 28641883
Bioresour Technol. 2017 Oct;241:473-481
pubmed: 28599226
Appl Microbiol Biotechnol. 2018 May;102(10):4381-4392
pubmed: 29594342
RSC Adv. 2020 May 20;10(33):19240-19246
pubmed: 35515475
Bioresour Technol. 2018 Jun;258:208-219
pubmed: 29525596
Pol J Microbiol. 2015;64(4):329-38
pubmed: 26999953
Bioresour Technol. 2017 Aug;237:204-212
pubmed: 28318934
Bioresour Technol. 2016 Jul;211:1-5
pubmed: 26995615
Bioresour Technol. 2010 Jul;101(14):5180-5
pubmed: 20307974
Water Sci Technol. 2015;72(1):116-22
pubmed: 26114279
J Hazard Mater. 2003 Jan 31;96(2-3):291-303
pubmed: 12493214
Bioresour Technol. 2013 May;136:169-75
pubmed: 23567678
Bioresour Technol. 2014 Jan;151:144-50
pubmed: 24215771
Bioresour Technol. 2020 Apr;302:122803
pubmed: 31981807
Chemosphere. 2021 Sep;278:130436
pubmed: 33839386
Front Bioeng Biotechnol. 2021 Mar 01;9:620292
pubmed: 33732689
Environ Technol. 2010 Feb;31(2):193-204
pubmed: 20391804
Bioresour Technol. 2016 Jul;211:257-66
pubmed: 27023380
Bioresour Technol. 2022 Mar;347:126430
pubmed: 34843872
Sci Rep. 2016 Sep 20;6:33600
pubmed: 27646687
Bioengineered. 2016 Sep 2;7(5):327-333
pubmed: 27487562
J Water Pollut Control Fed. 1976 May;48(5):835-52
pubmed: 948105
Environ Sci Technol. 2021 Oct 19;55(20):14215-14224
pubmed: 34618441
Microb Ecol. 2017 May;73(4):801-814
pubmed: 27796418
Environ Technol. 2022 Jun;43(16):2457-2466
pubmed: 33563141
Environ Technol. 2021 Aug;42(19):3036-3047
pubmed: 31987004
Water Sci Technol. 2017 Jan;75(1-2):57-68
pubmed: 28067646
J Appl Microbiol. 2022 Feb;132(2):890-906
pubmed: 34469043
Front Microbiol. 2020 Jun 23;11:1385
pubmed: 32655535
Materials (Basel). 2021 Feb 16;14(4):
pubmed: 33669295
Water Sci Technol. 2016;74(1):65-72
pubmed: 27386984
Chemosphere. 2011 Mar;83(1):63-8
pubmed: 21272910