A simple multilevel sampler for synchronous collection of stratified waters.

In-situ assessments Physicochemical gradients Stratified water sampler Synchronous collection

Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
20 Jan 2023
Historique:
received: 06 10 2022
accepted: 13 01 2023
entrez: 20 1 2023
pubmed: 21 1 2023
medline: 25 1 2023
Statut: epublish

Résumé

Stratified water collection plays a crucial role in water quality monitoring, as most water bodies are not perfectly mixed systems. In order to precisely collect stratified waters, we developed an inexpensive, simple, and high-resolution sampler to simultaneously collect and measure physical and chemical parameters along vertical water profiles. The water sampler predominantly consists of two parts: (1) an apparatus for measuring sampling depth below the water and (2) water sampling units secured below the water. Proof of concept water sampling was performed in Caohai wetland (Southwest China) at 40 cm intervals, as sampling depth and interval are adjustable. Stratified waters in four sampling sites were characterized by markedly different levels of major and trace elements as well as physicochemical parameters. Results indicate this simple multilevel sampler to be a cheap, precise, and portable option for simultaneously collecting water samples at different depths in a wide array of water body types.

Identifiants

pubmed: 36662368
doi: 10.1007/s10661-023-10944-0
pii: 10.1007/s10661-023-10944-0
doi:

Substances chimiques

Water Pollutants, Chemical 0
Trace Elements 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

314

Subventions

Organisme : National Natural Science Foundation of China, a Project of Karst Scientific Research Center of the People's Government of Guizhou Province
ID : U1612442
Organisme : A Project of First-Class Disciplines in Guizhou Province
ID : GNYL [2017] 007
Organisme : A Grant-in-Aid for Young Scientists
ID : 20K19953

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

APHA. Standard Methods for the Examination of Water and Wastewater. (1998). APHA-AWWA-WPCF. Washington D.C.
Booth, R. K. (2008). Testate amoebae as proxies for mean annual water-table depth in Sphagnum-dominated peatlands of North America. Journal of Quaternary Science: Published for the Quaternary Research Association, 23, 43–57. https://doi.org/10.1002/jqs.1114
doi: 10.1002/jqs.1114
Chapin, T. P., & Todd, A. S. (2012). MiniSipper: A new in-situ water sampler for high-resolution, long-duration acid mine drainage monitoring. Science of the Total Environment, 439, 343–353. https://doi.org/10.1016/j.scitotenv.2012.07.083
doi: 10.1016/j.scitotenv.2012.07.083
Chen, C. E., Zhang, H., & Jones, K. C. (2012). A novel passive water sampler for in-situ sampling of antibiotics. Journal of Environmental Monitoring, 14, 1523–1530. https://doi.org/10.1039/C2EM30091E
doi: 10.1039/C2EM30091E
Chong, K. Y., Liu, H., Yin, K. D., Harrison, P. J., & Kau, K. K. (2017). A bottom water sampler for determining chemical gradients across the water-sediment interface. Marine Pollution Bulletin, 117, 61–65. https://doi.org/10.1016/j.marpolbul.2017.01.052
doi: 10.1016/j.marpolbul.2017.01.052
Fanning, K. A., & Pilson, M. E. Q. (1971). Interstitial silica and p H in marine sediments: Some effects of sampling procedures. Science, 173, 1228–1231. Retrieved 2015, from https://www.jstor.org/stable/1731968
Gkritzalis, P. A., Palmer, M. R., & Mowlem, M. C. (2012). Adaptation of an osmotically pumped continuous in-situ water sampler for application in riverine environments. Environmental Science Technology, 46, 7293–7300. https://doi.org/10.1021/es300226y
doi: 10.1021/es300226y
Joeris, L. S. (1964). A horizontal sampler for collection of water samples near the bottom. Limnology Oceanography, 9, 595–598.
doi: 10.4319/lo.1964.9.4.0595
Kennedy, C. D., Genereux, D. P., Corbett, D. R., & Mitasova, H. (2007). Design of a light-oil piezomanometer for measurement of hydraulic head differences and collection of groundwater samples. Water Resources Research, 43, W09501. https://doi.org/10.1029/2007WR005904
doi: 10.1029/2007WR005904
Krumme, U., Zheng, Y., & Wang, T. C. (2010). A cheap and rapidly built bottom water sampler for shallow-water environments. Asian Journal of Water Environment and Pollution, 7, 117–120. https://doi.org/10.1016/j.marenvres.2012.09.002
Lunven, M., Guillaud, J. F., Youénou, A., Crassous, M. P., Berric, R., Gall, E. L., Kérouel, R., Labry, C., & Aminot, A. (2005). Nutrient and phytoplankton distribution in the Loire River plume (Bay of Biscay, France) resolved by a new fine scale sampler. Estuarine Coastal Shelf Science, 65, 94–108. https://doi.org/10.1016/j.ecss.2005.06.001
doi: 10.1016/j.ecss.2005.06.001
Majaneva, M., Autio, R., Huttunen, M., Kuosa, H., & Kuparinen, J. (2009). Phytoplankton monitoring: The effect of sampling methods used during different stratification and bloom conditions in the Baltic Sea. Boreal Environment Research, 14, 313–322.
Mclaughlin, M. R., Brooks, J. P., & Adeli, A. (2014). A new sampler for stratified lagoon chemical and microbiological assessments. Environmental Monitoring and Assessment, 186, 4097–4110. https://doi.org/10.1007/s10661-014-3683-z
doi: 10.1007/s10661-014-3683-z
Pabich, W. J., Valiela, I., & Hemond, H. F. (2001). Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, USA. Biogeochemistry, 55, 247–268.
doi: 10.1023/A:1011842918260
Sattley, W., Brad, B., Stephen, C., & Michael, M. (2017). Design, construction, and application of an inexpensive, high-resolution water sampler. Water, 9, 578. https://doi.org/10.3390/w9080578
doi: 10.3390/w9080578
Straight, B. J., Castendyk, D. N., Mcknight, D. M., Newman, C. P., Filiatreault, P., & Pino, A. (2021). Using an unmanned aerial vehicle water sampler to gather data in a pit-lake mining environment to assess closure and monitoring. Environmental Monitoring and Assessment, 193, 1–15. https://doi.org/10.1007/s10661-021-09316-3
doi: 10.1007/s10661-021-09316-3
Sun, J., Takahashi, Y., Strosnider, W. H., Kogure, T., Wang B., Wu, P., Zhu, L. J., & Dong Z. F. (2021). Identification and quantification of contributions to karst groundwater using a triple stable isotope labeling and mass balance model. Chemosphere, 263, 127946. https://doi.org/10.1016/j.chemosphere.2020.127946
Sun, J., Kobayashi, T., Strosnider, W. H. J., & Wu, P. (2017). Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters. Journal of Hydrology, 551, 245–252. https://doi.org/10.1016/j.jhydrol.2017.06.006
doi: 10.1016/j.jhydrol.2017.06.006
Tan, Y., Wei, Q., Zhang, B., Zheng, Z., Guo, J., Fan, F., & Peng, Y. (2021). Evaluation of soil and irrigation water quality in Caohai lakeside zone. Sustainability, 13, 12866.
doi: 10.3390/su132212866
Thomsen, L., Jähmlich, S., Graf, G., Friedrichs, M., Wanner, S., & Springer, B. (1996). An instrument for aggregate studies in the benthic boundary layer. Marine Geology, 135, 153–157. https://doi.org/10.1016/S0025-3227(96)00059-X
doi: 10.1016/S0025-3227(96)00059-X
Vrana, B., Urík, J., Fedorova, G., Švecová, H., Grabicová, K., Golovko, O., Randák, T., & Grabic, R. (2021). In situ calibration of polar organic chemical integrative sampler (POCIS) for monitoring of pharmaceuticals in surface waters. Environmental Pollution, 269, 116121. https://doi.org/10.1016/j.envpol.2020.116121
Watson, P. G., & Frickers, T. E. (1990). A multilevel in-situ pore-water sampler for use in intertidal sediments and laboratory microcosms. Limnology Oceanography, 35, 1381–1389. https://doi.org/10.4319/lo.1990.35.6.1381
doi: 10.4319/lo.1990.35.6.1381

Auteurs

Xuanzheng Guo (X)

Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.

Pan Wu (P)

Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.

William H J Strosnider (WHJ)

Baruch Marine Field Laboratory, University of South Carolina, 2306 Crab Hall Road, Georgetown, SC, 29440, USA.

Yoshio Takahashi (Y)

Department of Earth and Planetary Science, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan.

Toshihiro Kogure (T)

Department of Earth and Planetary Science, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan.

Jing Sun (J)

Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China. sunjingchiba@gmail.com.
Department of Earth and Planetary Science, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan. sunjingchiba@gmail.com.

Articles similaires

Psoriasis Humans Magnesium Zinc Trace Elements
Humans Neoplasms Male Female Middle Aged
Humans Male Female Aged Middle Aged

Classifications MeSH