Ichthyosis.


Journal

Nature reviews. Disease primers
ISSN: 2056-676X
Titre abrégé: Nat Rev Dis Primers
Pays: England
ID NLM: 101672103

Informations de publication

Date de publication:
19 01 2023
Historique:
accepted: 02 12 2022
entrez: 19 1 2023
pubmed: 20 1 2023
medline: 24 1 2023
Statut: epublish

Résumé

The ichthyoses are a large, heterogeneous group of skin cornification disorders. They can be inherited or acquired, and result in defective keratinocyte differentiation and abnormal epidermal barrier formation. The resultant skin barrier dysfunction leads to increased transepidermal water loss and inflammation. Disordered cornification is clinically characterized by skin scaling with various degrees of thickening, desquamation (peeling) and erythema (redness). Regardless of the type of ichthyosis, many patients suffer from itching, recurrent infections, sweating impairment (hypohidrosis) with heat intolerance, and diverse ocular, hearing and nutritional complications that should be monitored periodically. The characteristic clinical features are considered to be a homeostatic attempt to repair the skin barrier, but heterogeneous clinical presentation and imperfect phenotype-genotype correlation hinder diagnosis. An accurate molecular diagnosis is, however, crucial for predicting prognosis and providing appropriate genetic counselling. Most ichthyoses severely affect patient quality of life and, in severe forms, may cause considerable disability and even death. So far, treatment provides only symptomatic relief. It is lifelong, expensive, time-consuming, and often provides disappointing results. A better understanding of the molecular mechanisms that underlie these conditions is essential for designing pathogenesis-driven and patient-tailored innovative therapeutic solutions.

Identifiants

pubmed: 36658199
doi: 10.1038/s41572-022-00412-3
pii: 10.1038/s41572-022-00412-3
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

2

Informations de copyright

© 2023. Springer Nature Limited.

Références

Oji, V. et al. Revised nomenclature and classification of inherited ichthyoses: results of the first ichthyosis consensus conference in Sorze 2009. J. Am. Acad. Dermatol. 63, 607–641 (2010). This publication delivers a general overview of the disease and the first classification of the many forms of ichthyosis, which remains the basis on which all proposed classifications are built.
doi: 10.1016/j.jaad.2009.11.020
Oji, V. & Traupe, H. Ichthyosis: clinical manifestations and practical treatment options. Am. J. Clin. Dermatol. 10, 351–364 (2009).
doi: 10.2165/11311070-000000000-00000
Madison, K. C. Barrier function of the skin: “La Raison d’Être” of the epidermis. J. Invest. Dermatol. 121, 231–241 (2003).
doi: 10.1046/j.1523-1747.2003.12359.x
Kolarsick, P. A., Ann Kolarsick, M. & Goodwin, C. Anatomy and physiology of the skin. J. Dermatol. Nurses Assoc. 3, 203–213 (2006). This publication describes an overview of the skin structure.
doi: 10.1097/JDN.0b013e3182274a98
Ramadon, D., McCrudden, M. T. C., Courtenay, A. J. & Donnelly, R. F. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv. Transl Res. 12, 758 (2022).
doi: 10.1007/s13346-021-00909-6
Watt, F. M. The stem cell compartment in human interfollicular epidermis. J. Dermatol. Sci. 28, 173–180 (2002).
doi: 10.1016/S0923-1811(02)00003-8
Fuchs, E. Epidermal differentiation and keratin gene expression. J. Cell Sci. Suppl. 17, 197–208 (1993).
doi: 10.1242/jcs.1993.Supplement_17.28
Moreci, R. S. & Lechler, T. Epidermal structure and differentiation. Curr. Biol. 30, R144–R149 (2020). This paper provides an in-depth view of keratinocyte differentiation and its crucial role in epidermal formation.
doi: 10.1016/j.cub.2020.01.004
Maestrini, E. et al. A molecular defect in loricrin, the major component of the cornified cell envelope, underlies Vohwinkel’s syndrome. Nat. Genet. 13, 70–77 (1996).
doi: 10.1038/ng0596-70
Nemes, Z. & Steinert, P. M. Bricks and mortar of the epidermal barrier. Exp. Mol. Med. 31, 5–19 (1999). This publication describes the bricks and mortar molecular model of the stratum corneum.
doi: 10.1038/emm.1999.2
Patel, N., Spencer, L. A., English, J. C. & Zirwas, M. J. Acquired ichthyosis. J. Am. Acad. Dermatol. 55, 647–656 (2006).
doi: 10.1016/j.jaad.2006.04.047
Schmuth, M. et al. Inherited ichthyoses/generalized Mendelian disorders of cornification. Eur. J. Hum. Genet. 21, 123–133 (2012).
doi: 10.1038/ejhg.2012.121
Mazereeuw-Hautier, J. et al. Management of congenital ichthyoses: European guidelines of care, part one. Br. J. Dermatol. 180, 272–281 (2019).
doi: 10.1111/bjd.17203
Mazereeuw-Hautier, J. et al. Management of congenital ichthyoses: European guidelines of care, part two. Br. J. Dermatol. 180, 484–495 (2019).
doi: 10.1111/bjd.16882
Moskowitz, D. G. et al. Pathophysiologic basis for growth failure in children with ichthyosis: an evaluation of cutaneous ultrastructure, epidermal permeability barrier function, and energy expenditure. J. Pediatr. 145, 82–92 (2004).
doi: 10.1016/j.jpeds.2004.03.052
DiGiovanna, J. J. & Robinson-Bostom, L. Ichthyosis: etiology, diagnosis, and management. Am. J. Clin. Dermatol. 4, 81–95 (2003).
doi: 10.2165/00128071-200304020-00002
KEI. Selected government definitions of orphan or rare diseases. KEI briefing note 2020:4 table 1: country definitions of orphan or rare diseases. KEI https://www.keionline.org/wp-content/uploads/KEI-Briefing-Note-2020-4-Defining-Rare-Diseases.pdf (2020).
Brown, S. J. et al. Filaggrin haploinsufficiency is highly penetrant and is associated with increased severity of eczema: further delineation of the skin phenotype in a prospective epidemiological study of 792 school children. Br. J. Dermatol. 161, 884 (2009).
doi: 10.1111/j.1365-2133.2009.09339.x
Amelina, S. S. et al. Prevalence of ichthyosis vulgaris and frequency of FLG R501X and 2282DEL4 mutations in the population of the Rostov region. Bull. Russ. State Med. Univ. 7, 51–55 (2018).
Ziprkowski, L. & Feinstein, A. A survey of ichthyosis vulgaris in Israel. Br. J. Dermatol. 86, 1–8 (1972).
doi: 10.1111/j.1365-2133.1972.tb01884.x
Kono, M. et al. Comprehensive screening for a complete set of Japanese-population-specific filaggrin gene mutations. Allergy 69, 537–540 (2014).
doi: 10.1111/all.12369
Chen, H. et al. Wide spectrum of filaggrin-null mutations in atopic dermatitis highlights differences between Singaporean Chinese and European populations. Br. J. Dermatol. 165, 106–114 (2011).
doi: 10.1111/j.1365-2133.2011.10331.x
Hsu, C. K. et al. Analysis of Taiwanese ichthyosis vulgaris families further demonstrates differences in FLG mutations between European and Asian populations. Br. J. Dermatol. 161, 448–451 (2009).
doi: 10.1111/j.1365-2133.2009.09112.x
Akiyama, M. FLG mutations in ichthyosis vulgaris and atopic eczema: spectrum of mutations and population genetics. Br. J. Dermatol. 162, 472–477 (2010).
doi: 10.1111/j.1365-2133.2009.09582.x
Wong, X. F. C. C. et al. Array-based sequencing of filaggrin gene for comprehensive detection of disease-associated variants. J. Allergy Clin. Immunol. 141, 814 (2018).
doi: 10.1016/j.jaci.2017.10.001
Afzal, S. et al. A novel nonsense mutation in the STS gene in a Pakistani family with X-linked recessive ichthyosis: including a very rare case of two homozygous female patients. BMC Med. Genet. 21, 20 (2020).
doi: 10.1186/s12881-020-0964-y
Craig, W. Y. et al. Prevalence of steroid sulfatase deficiency in California according to race and ethnicity. Prenat. Diagn. 30, 893–898 (2010).
doi: 10.1002/pd.2588
Ingordo, V. et al. Frequency of X-linked ichthyosis in coastal southern Italy: a study on a representative sample of a young male population. Dermatology 207, 148–150 (2003).
doi: 10.1159/000071784
Wells, R. S., Kerr, C. B. & Kerr, C. B. Clinical features of autosomal dominant and sex-linked ichthyosis in an English population. Br. Med. J. 1, 947 (1966).
doi: 10.1136/bmj.1.5493.947
de Unamuno, P., Martin‐Pascual, A. & Garcia‐Perez, A. X‐linked ichthyosis. Br. J. Dermatol. 97, 53–58 (1977).
doi: 10.1111/j.1365-2133.1977.tb15427.x
Sakura, N., Nishimura, S. I., Matsumoto, T. & Ohsaki, M. Frequency of steroid sulfatase deficiency in Hiroshima. Pediatr. Int. 40, 63–64 (1998).
doi: 10.1111/j.1442-200X.1998.tb01404.x
Milstone, L. M., Miller, K., Haberman, M. & Dickens, J. Incidence of moderate to severe ichthyosis in the United States. Arch. Dermatol. 148, 1080–1081 (2012).
doi: 10.1001/archdermatol.2012.1702
Hernández-Martín, A. et al. Prevalence of autosomal recessive congenital ichthyosis: a population-based study using the capture-recapture method in Spain. J. Am. Acad. Dermatol. 67, 240–244 (2012).
doi: 10.1016/j.jaad.2011.07.033
Dreyfus, I. et al. Prevalence of inherited ichthyosis in France: a study using capture-recapture method. Orphanet J. Rare Dis. 9, 1 (2014). This paper presents an in-depth epidemiological study on the rare forms of ichthyosis.
doi: 10.1186/1750-1172-9-1
Kurosawa, M. et al. Results of a nationwide epidemiologic survey of autosomal recessive congenital ichthyosis and ichthyosis syndromes in Japan. J. Am. Acad. Dermatol. 81, 1086–1092.e1 (2019).
doi: 10.1016/j.jaad.2018.07.056
Al-Zayir, A. A. & Al-Amro Al-Alakloby, O. M. Clinico-epidemiological features of primary hereditary ichthyoses in the Eastern province of Saudi Arabia. Int. J. Dermatol. 45, 257–264 (2006).
doi: 10.1111/j.1365-4632.2006.02042.x
Mohamad, J. et al. Molecular epidemiology of non-syndromic autosomal recessive congenital ichthyosis in a Middle-Eastern population. Exp. Dermatol. 30, 1290–1297 (2021).
doi: 10.1111/exd.14345
Lima Cunha, D. et al. Unknown mutations and genotype/phenotype correlations of autosomal recessive congenital ichthyosis in patients from Saudi Arabia and Pakistan. Mol. Genet. Genom. Med. 7, 539 (2019).
doi: 10.1002/mgg3.539
Hassani, B. et al. Filaggrin gene polymorphisms in Iranian ichthyosis vulgaris and atopic dermatitis patients. Int. J. Dermatol. 57, 1485–1491 (2018).
doi: 10.1111/ijd.14213
Koshy, R., Ranawat, A. & Scaria, V. al mena: a comprehensive resource of human genetic variants integrating genomes and exomes from Arab, Middle Eastern and North African populations. J. Hum. Genet. 62, 889–894 (2017).
doi: 10.1038/jhg.2017.67
Israeli, S. et al. Molecular analysis of a series of Israeli families with Comèl-Netherton syndrome. Dermatology 228, 183–188 (2014).
doi: 10.1159/000357560
Kamalpour, L. et al. Resource utilization and quality of life associated with congenital ichthyoses. Pediatr. Dermatol. 28, 512–518 (2011).
doi: 10.1111/j.1525-1470.2011.01432.x
Murase, C. et al. Cross-sectional survey on disease severity in Japanese patients with harlequin ichthyosis/ichthyosis: syndromic forms and quality-of-life analysis in a subgroup. J. Dermatol. Sci. 92, 127–133 (2018).
doi: 10.1016/j.jdermsci.2018.08.008
Hellström Pigg, M. et al. Spectrum of autosomal recessive congenital ichthyosis in scandinavia: clinical characteristics and novel and recurrent mutations in 132 patients. Acta Derm. Venereol. 96, 932–937 (2016).
doi: 10.2340/00015555-2418
Park, J. S. et al. Acquired ichthyosis, asteatotic dermatitis or xerosis? An update on pathoetiology and drug-induced associations. J. Eur. Acad. Dermatol. Venereol. https://doi.org/10.1111/JDV.18608 (2022).
doi: 10.1111/JDV.18608
Goodman, D. S. et al. Prevalence of cutaneous disease in patients with acquired immunodeficiency syndrome (AIDS) or AIDS-related complex. J. Am. Acad. Dermatol. 17, 210–220 (1987).
doi: 10.1016/S0190-9622(87)70193-5
Pavlović, M. D. et al. The prevalence of cutaneous manifestations in young patients with type 1 diabetes. Diabetes Care 30, 1964–1967 (2007).
doi: 10.2337/dc07-0267
Okajima, R., Oliveira, A. C., Smid, J., Casseb, J. & Sanches, J. A. High prevalence of skin disorders among HTLV-1 infected individuals independent of clinical status. PLoS Negl. Trop. Dis. 7, e2546 (2013).
doi: 10.1371/journal.pntd.0002546
Moore, R. L. & Devere, T. S. Epidermal manifestations of internal malignancy. Dermatol. Clin. 26, 17–29 (2008).
doi: 10.1016/j.det.2007.08.008
Voegeli, D. Topical steroids and emollients in atopic eczema–which should be applied first? Pract. Nurs. 28, 14–20 (2017).
doi: 10.12968/pnur.2017.28.1.14
Vahlquist, A., Fischer, J. & Törmä, H. Inherited nonsyndromic ichthyoses: an update on pathophysiology, diagnosis and treatment. Am. J. Clin. Dermatol. 19, 51 (2018).
doi: 10.1007/s40257-017-0313-x
Chu, P. G. & Weiss, L. M. Keratin expression in human tissues and neoplasms. Histopathology 40, 403–439 (2002).
doi: 10.1046/j.1365-2559.2002.01387.x
Rothnagel, J. A. et al. Mutations in the rod domains of keratins 1 and 10 in epidermolytic hyperkeratosis. Science 257, 1128–1130 (1992).
doi: 10.1126/science.257.5073.1128
Rothnagel, J. A. et al. Mutations in the rod domain of keratin 2e in patients with ichthyosis bullosa of Siemens. Nat. Genet. 7, 485–490 (1994).
doi: 10.1038/ng0894-485
Sybert, V. P., Dale, B. A. & Holbrook, K. A. Ichthyosis vulgaris: identification of a defect in synthesis of filaggrin correlated with an absence of keratohyaline granules. J. Invest. Dermatol. 84, 191–194 (1985).
doi: 10.1111/1523-1747.ep12264813
Brown, S. J. & McLean, W. H. I. One remarkable molecule: filaggrin. J. Invest. Dermatol. 132, 751–762 (2012).
doi: 10.1038/jid.2011.393
Kirchmeier, P., Zimmer, A., Bouadjar, B., Rösler, B. & Fischer, J. Whole-exome-sequencing reveals small deletions in CASP14 in patients with autosomal recessive inherited ichthyosis. Acta Derm. Venereol. 97, 102–104 (2017).
doi: 10.2340/00015555-2510
Alef, T. et al. Ichthyosis, follicular atrophoderma, and hypotrichosis caused by mutations in ST14 is associated with impaired profilaggrin processing. J. Invest. Dermatol. 129, 862–869 (2009).
doi: 10.1038/jid.2008.311
Boyden, L. M. et al. Mutations in ASPRV1 cause dominantly inherited ichthyosis. Am. J. Hum. Genet. 107, 158 (2020).
doi: 10.1016/j.ajhg.2020.05.013
Dahlqvist, J. et al. A single-nucleotide deletion in the POMP 5’ UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis. Am. J. Hum. Genet. 86, 596–603 (2010).
doi: 10.1016/j.ajhg.2010.02.018
Cassidy, A. J. et al. A homozygous missense mutation in TGM5 abolishes epidermal transglutaminase 5 activity and causes acral peeling skin syndrome. Am. J. Hum. Genet. 77, 909–917 (2005).
doi: 10.1086/497707
Akiyama, M. Acylceramide is a key player in skin barrier function: insight into the molecular mechanisms of skin barrier formation and ichthyosis pathogenesis. FEBS J. 288, 2119–2130 (2021).
doi: 10.1111/febs.15497
Pappas, A. Epidermal surface lipids. Dermatoendocrinology 1, 72 (2009).
doi: 10.4161/derm.1.2.7811
De Laurenzi, V. et al. Sjögren–Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene. Nat. Genet. 12, 52–57 (1996).
doi: 10.1038/ng0196-52
Mueller, N. et al. De novo mutation in ELOVL1 causes ichthyosis, acanthosis nigricans, hypomyelination, spastic paraplegia, high frequency deafness and optic atrophy. J. Med. Genet. 56, 164–175 (2019).
doi: 10.1136/jmedgenet-2018-105711
Aldahmesh, M. A. et al. Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. Am. J. Hum. Genet. 89, 745–750 (2011).
doi: 10.1016/j.ajhg.2011.10.011
Mauldin, E. A. et al. Cellular and metabolic basis for the ichthyotic phenotype in NIPAL4 (ichthyin)–deficient canines. Am. J. Pathol. 188, 1419–1429 (2018). This paper presents research into the metabolic causes of ichthyosis; its supplementary figures provide a clear overview of the ceramide pathway.
doi: 10.1016/j.ajpath.2018.02.008
Lefèvre, C. et al. Mutations in a new cytochrome P450 gene in lamellar ichthyosis type 3. Hum. Mol. Genet. 15, 767–776 (2006).
doi: 10.1093/hmg/ddi491
Ohno, Y. et al. Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation. Proc. Natl Acad. Sci. USA 112, 7707–7712 (2015).
doi: 10.1073/pnas.1503491112
Klar, J. et al. Mutations in the fatty acid transport protein 4 gene cause the ichthyosis prematurity syndrome. Am. J. Hum. Genet. 85, 248–253 (2009).
doi: 10.1016/j.ajhg.2009.06.021
Yamamoto, H., Hattori, M., Chamulitrat, W., Ohno, Y. & Kihara, A. Skin permeability barrier formation by the ichthyosis-causative gene FATP4 through formation of the barrier lipid ω-O-acylceramide. Proc. Natl Acad. Sci. USA 117, 2914–2922 (2020).
doi: 10.1073/pnas.1917525117
Jansen, G. A. et al. Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat. Genet. 17, 190–193 (1997).
doi: 10.1038/ng1097-190
Mihalik, S. J. et al. Identification of PAHX, a Refsum disease gene. Nat. Genet. 17, 185–189 (1997).
doi: 10.1038/ng1097-185
Van Den Brink, D. M. et al. Identification of PEX7 as the second gene involved in Refsum disease. Am. J. Hum. Genet. 72, 471–477 (2003).
doi: 10.1086/346093
Rivier, M., Castiel, I., Safonova, I., Ailhaud, G. & Michel, S. Peroxisome proliferator-activated receptor-α enhances lipid metabolism in a skin equivalent model. J. Invest. Dermatol. 114, 681–687 (2000).
doi: 10.1046/j.1523-1747.2000.00939.x
Acuna-Hidalgo, R. et al. Neu-Laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am. J. Hum. Genet. 95, 285–293 (2014).
doi: 10.1016/j.ajhg.2014.07.012
Shaheen, R. et al. Neu-Laxova syndrome, an inborn error of serine metabolism, is caused by mutations in PHGDH. Am. J. Hum. Genet. 94, 898–904 (2014).
doi: 10.1016/j.ajhg.2014.04.015
Hart, C. E. et al. Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am. J. Hum. Genet. 80, 931 (2007).
doi: 10.1086/517888
Boyden, L. M. et al. Mutations in KDSR cause recessive progressive symmetric erythrokeratoderma. Am. J. Hum. Genet. 100, 978–984 (2017).
doi: 10.1016/j.ajhg.2017.05.003
Rabionet, M., Gorgas, K. & Sandhoff, R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1841, 422–434 (2014).
doi: 10.1016/j.bbalip.2013.08.011
Linn, S. C. et al. Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem. Soc. Trans. 29, 831 (2001).
doi: 10.1042/bst0290831
Radner, F. P. W. et al. Mutations in CERS3 cause autosomal recessive congenital ichthyosis in humans. PLoS Genet. 9, e1003536 (2013).
doi: 10.1371/journal.pgen.1003536
Lefèvre, C. et al. Mutations in ichthyin a new gene on chromosome 5q33 in a new form of autosomal recessive congenital ichthyosis. Hum. Mol. Genet. 13, 2473–2482 (2004).
doi: 10.1093/hmg/ddh263
Honda, Y. et al. Decreased skin barrier lipid acylceramide and differentiation-dependent gene expression in ichthyosis gene Nipal4-knockout mice. J. Invest. Dermatol. 138, 741–749 (2018).
doi: 10.1016/j.jid.2017.11.008
Israeli, S. et al. A mutation in LIPN, encoding epidermal lipase N, causes a late-onset form of autosomal-recessive congenital ichthyosis. Am. J. Hum. Genet. 88, 482 (2011).
doi: 10.1016/j.ajhg.2011.02.011
Lefèvre, C. et al. Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am. J. Hum. Genet. 69, 1002–1012 (2001).
doi: 10.1086/324121
Grall, A. et al. PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. Nat. Genet. 44, 140–147 (2012).
doi: 10.1038/ng.1056
Kien, B. et al. ABHD5 stimulates PNPLA1-mediated ω-O-acylceramide biosynthesis essential for a functional skin permeability barrier. J. Lipid Res. 59, 2360–2367 (2018).
doi: 10.1194/jlr.M089771
Monies, D. et al. Identification of a novel lethal form of autosomal recessive ichthyosis caused by UDP-glucose ceramide glucosyltransferase deficiency. Clin. Genet. 93, 1252–1253 (2018).
doi: 10.1111/cge.13180
Lefèvre, C. et al. Mutations in the transporter ABCA12 are associated with lamellar ichthyosis type 2. Hum. Mol. Genet. 12, 2369–2378 (2003).
doi: 10.1093/hmg/ddg235
Sidransky, E. et al. The clinical, molecular, and pathological characterisation of a family with two cases of lethal perinatal type 2 Gaucher disease. J. Med. Genet. 33, 132–136 (1996).
doi: 10.1136/jmg.33.2.132
Hirabayashi, T., Murakami, M. & Kihara, A. The role of PNPLA1 in ω-O-acylceramide synthesis and skin barrier function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 869–879 (2019).
doi: 10.1016/j.bbalip.2018.09.010
Jobard, F. et al. Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1. Hum. Mol. Genet. 11, 107–113 (2002).
doi: 10.1093/hmg/11.1.107
Shigehara, Y. et al. Mutations in SDR9C7 gene encoding an enzyme for vitamin A metabolism underlie autosomal recessive congenital ichthyosis. Hum. Mol. Genet. 25, 4484–4493 (2016).
Huber, M. et al. Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science 267, 525–528 (1995).
doi: 10.1126/science.7824952
Nemes, Z., Marekov, L. N., Fésüs, L. & Steinert, P. M. A novel function for transglutaminase 1: attachment of long-chain ω-hydroxyceramides to involucrin by ester bond formation. Proc. Natl Acad. Sci. USA 96, 8402–8407 (1999).
doi: 10.1073/pnas.96.15.8402
Elias, P. M. et al. Basis for the permeability barrier abnormality in lamellar ichthyosis. Exp. Dermatol. 11, 248–256 (2002).
doi: 10.1034/j.1600-0625.2001.110308.x
Kuramoto, N. et al. Development of ichthyosiform skin compensates for defective permeability barrier function in mice lacking transglutaminase 1. J. Clin. Invest. 109, 243–250 (2002).
doi: 10.1172/JCI0213563
Oeffner, F. et al. IFAP syndrome is caused by deficiency in MBTPS2, an intramembrane zinc metalloprotease essential for cholesterol homeostasis and ER stress response. Am. J. Hum. Genet. 84, 459–467 (2009).
doi: 10.1016/j.ajhg.2009.03.014
Wang, H. et al. Mutations in SREBF1, encoding sterol regulatory element binding transcription factor 1, cause autosomal-dominant IFAP syndrome. Am. J. Hum. Genet. 107, 34–45 (2020).
doi: 10.1016/j.ajhg.2020.05.006
Kö, A., Happle, R., Bornholdt, D., Engel, H. & Grzeschik, K.-H. Mutations in the NSDHL gene, encoding a 3-hydroxysteroid dehydrogenase, cause CHILD syndrome. J. Med. Genet. 90, 339–346 (2000).
Derry, J. M. J. et al. Mutations in a delta 8-delta 7 sterol isomerase in the tattered mouse and X-linked dominant chondrodysplasia punctata. Nat. Genet. 22, 286–290 (1999).
doi: 10.1038/10350
Heinz, L. et al. Mutations in SULT2B1 cause autosomal-recessive congenital ichthyosis in humans. Am. J. Hum. Genet. 100, 926–939 (2017).
doi: 10.1016/j.ajhg.2017.05.007
Nemes, Z., Demény, M., Marekov, L. N., Fésüs, L. & Steinert, P. M. Cholesterol 3-sulfate interferes with cornified envelope assembly by diverting transglutaminase 1 activity from the formation of cross-links and esters to the hydrolysis of glutamine. J. Biol. Chem. 275, 2636–2646 (2000).
doi: 10.1074/jbc.275.4.2636
Mohandas, T., Shapiro, L. J., Sparkes, R. S. & Sparkes, M. C. Regional assignment of the steroid sulfatase—X-linked ichthyosis locus: implications for a noninactivated region on the short arm of human X chromosome. Proc. Natl Acad. Sci. USA 76, 5779–5783 (1979).
doi: 10.1073/pnas.76.11.5779
Dierks, T. et al. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human Cα-formylglycine generating enzyme. Cell 113, 435–444 (2003).
doi: 10.1016/S0092-8674(03)00347-7
Cosma, M. P. et al. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113, 445–456 (2003).
doi: 10.1016/S0092-8674(03)00348-9
Sprecher, E. et al. A mutation in SNAP29, coding for a SNARE protein involved in intracellular trafficking, causes a novel neurocutaneous syndrome characterized by cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma. Am. J. Hum. Genet. 77, 242–251 (2005).
doi: 10.1086/432556
Cullinane, A. R. et al. Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. Nat. Genet. 42, 303–312 (2010).
doi: 10.1038/ng.538
Gissen, P. et al. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis–renal dysfunction–cholestasis (ARC) syndrome. Nat. Genet. 36, 400–404 (2004).
doi: 10.1038/ng1325
Cantagrel, V. & Lefeber, D. J. From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases. J. Inherit. Metab. Dis. 34, 859 (2011). This paper presents an overview of the disorders of glycosylation, the dolichol pathway and its connection to cholesterol synthesis.
doi: 10.1007/s10545-011-9301-0
Al-Gazali, L., Hertecant, J., Algawi, K., El Teraifi, H. & Dattani, M. A new autosomal recessive syndrome of ocular colobomas, ichthyosis, brain malformations and endocrine abnormalities in an inbred Emirati family. Am. J. Med. Genet. A 146A, 813–819 (2008).
doi: 10.1002/ajmg.a.32114
Kranz, C. et al. A defect in dolichol phosphate biosynthesis causes a new inherited disorder with death in early infancy. Am. J. Hum. Genet. 80, 433 (2007).
doi: 10.1086/512130
Schenk, B. et al. MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J. Clin. Invest. 108, 1687–1695 (2001).
doi: 10.1172/JCI200113419
Ng, B. G. et al. Mutations in the glycosylphosphatidylinositol gene PIGL cause CHIME syndrome. Am. J. Hum. Genet. 90, 685–688 (2012).
doi: 10.1016/j.ajhg.2012.02.010
Brandner, J. M., Haftek, M. & Niessen, C. M. Adherens junctions, desmosomes and tight junctions in epidermal barrier function. Open Dermatol. J. 4, 14–20 (2010).
Baala, L. et al. Homozygosity mapping of a locus for a novel syndromic ichthyosis to chromosome 3q27-q28. J. Invest. Dermatol. 119, 70–76 (2002).
doi: 10.1046/j.1523-1747.2002.01809.x
Hadj-Rabia, S. et al. Multiplex epithelium dysfunction due to CLDN10 mutation: the HELIX syndrome. Genet. Med. 20, 190–201 (2017).
doi: 10.1038/gim.2017.71
Boyden, L. M. et al. Dominant de novo mutations in GJA1 cause erythrokeratodermia variabilis et progressiva, without features of oculodentodigital dysplasia. J. Invest. Dermatol. 135, 1540–1547 (2015).
doi: 10.1038/jid.2014.485
Richard, G. et al. Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome. Am. J. Hum. Genet. 70, 1341–1348 (2002).
doi: 10.1086/339986
Richard, G. et al. Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat. Genet. 20, 366–369 (1998).
doi: 10.1038/3840
Macari, F. et al. Mutation in the gene for connexin 30.3 in a family with erythrokeratodermia variabilis. Am. J. Hum. Genet. 67, 1296–1301 (2000).
doi: 10.1016/S0002-9297(07)62957-7
Jan, A. Y., Amin, S., Ratajczak, P., Richard, G. & Sybert, V. P. Genetic heterogeneity of KID syndrome: identification of a Cx30 gene (GJB6) mutation in a patient with KID syndrome and congenital atrichia. J. Invest. Dermatol. 122, 1108–1113 (2004).
doi: 10.1111/j.0022-202X.2004.22518.x
Samuelov, L. et al. Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nat. Genet. 45, 1244–1248 (2013).
doi: 10.1038/ng.2739
McAleer, M. A. et al. Severe dermatitis, multiple allergies, and metabolic wasting syndrome caused by a novel mutation in the N-terminal plakin domain of desmoplakin. J. Allergy Clin. Immunol. 136, 1268 (2015).
doi: 10.1016/j.jaci.2015.05.002
Oji, V. et al. Loss of corneodesmosin leads to severe skin barrier defect, pruritus, and atopy: unraveling the peeling skin disease. Am. J. Hum. Genet. 87, 274–281 (2010).
doi: 10.1016/j.ajhg.2010.07.005
Duchatelet, S. et al. Mutations in PERP cause dominant and recessive keratoderma. J. Invest. Dermatol. 139, 380–390 (2019).
doi: 10.1016/j.jid.2018.08.026
Basel-Vanagaite, L. et al. Autosomal recessive ichthyosis with hypotrichosis caused by a mutation in ST14, encoding type II transmembrane serine protease matriptase. Am. J. Hum. Genet. 80, 467 (2007).
doi: 10.1086/512487
Pigors, M. et al. Loss-of-function mutations in SERPINB8 linked to exfoliative ichthyosis with impaired mechanical stability of intercellular adhesions. Am. J. Hum. Genet. 99, 430–436 (2016).
doi: 10.1016/j.ajhg.2016.06.004
Chavanas, S. et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat. Genet. 25, 141–142 (2000).
doi: 10.1038/75977
Deraison, C. et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol. Biol. Cell 18, 3607 (2007).
doi: 10.1091/mbc.e07-02-0124
Lin, Z. et al. Loss-of-function mutations in CAST cause peeling skin, leukonychia, acral punctate keratoses, cheilitis, and knuckle pads. Am. J. Hum. Genet. 96, 440–447 (2015).
doi: 10.1016/j.ajhg.2014.12.026
Blaydon, D. C. et al. Mutations in CSTA, encoding cystatin A, underlie exfoliative ichthyosis and reveal a role for this protease inhibitor in cell-cell adhesion. Am. J. Hum. Genet. 89, 564–571 (2011).
doi: 10.1016/j.ajhg.2011.09.001
Alfares, A. et al. Peeling skin syndrome associated with novel variant in FLG2 gene. Am. J. Med. Genet. A 173, 3201–3204 (2017).
doi: 10.1002/ajmg.a.38468
Mohamad, J. et al. Filaggrin 2 deficiency results in abnormal cell-cell adhesion in the cornified cell layers and causes peeling skin syndrome type A. J. Invest. Dermatol. 138, 1736–1743 (2018).
doi: 10.1016/j.jid.2018.04.032
Takayama, K., Danks, D. M., Salazar, E. P., Cleaver, J. E. & Weber, C. A. DNA repair characteristics and mutations in the ERCC2 DNA repair and transcription gene in a trichothiodystrophy patient. Hum. Mutat. 9, 519–525 (1997).
doi: 10.1002/(SICI)1098-1004(1997)9:6<519::AID-HUMU4>3.0.CO;2-X
Weeda, G. et al. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Am. J. Hum. Genet. 60, 320 (1997).
Giglia-Mari, G. et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat. Genet. 36, 714–719 (2004).
doi: 10.1038/ng1387
Kuschal, C. et al. GTF2E2 mutations destabilize the general transcription factor complex TFIIE in individuals with DNA repair-proficient trichothiodystrophy. Am. J. Hum. Genet. 98, 627–642 (2016).
doi: 10.1016/j.ajhg.2016.02.008
Corbett, M. A. et al. A novel X-linked trichothiodystrophy associated with a nonsense mutation in RNF113A. J. Med. Genet. 52, 269–274 (2015).
doi: 10.1136/jmedgenet-2014-102418
Haselbach, D. et al. Structure and conformational dynamics of the human spliceosomal bact complex. Cell 172, 454–464.e11 (2018).
doi: 10.1016/j.cell.2018.01.010
Lear, T. et al. RING finger protein 113A regulates C-X-C chemokine receptor type 4 stability and signaling. Am. J. Physiol. Cell Physiol. 313, C584–C592 (2017).
doi: 10.1152/ajpcell.00193.2017
Botta, E. et al. Protein instability associated with AARS1 and MARS1 mutations causes trichothiodystrophy. Hum. Mol. Genet. 30, 1711–1720 (2021).
doi: 10.1093/hmg/ddab123
Theil, A. F. et al. Bi-allelic TARS mutations are associated with brittle hair phenotype. Am. J. Hum. Genet. 105, 434–440 (2019).
doi: 10.1016/j.ajhg.2019.06.017
Agolini, E. et al. Expansion of the clinical and molecular spectrum of an XPD-related disorder linked to biallelic mutations in ERCC2 gene. Clin. Genet. 99, 842–848 (2021).
doi: 10.1111/cge.13957
Helman, G. et al. Expanded phenotype of AARS1-related white matter disease. Genet. Med. 23, 2352–2359 (2021).
doi: 10.1038/s41436-021-01286-8
La Fay, C. et al. Deep phenotyping of MARS1 (interstitial lung and liver disease) and LARS1 (infantile liver failure syndrome 1) recessive multisystemic disease using human phenotype ontology annotation: overlap and differences. Case report and review of literature. Eur. J. Med. Genet. 64, 104334 (2021).
doi: 10.1016/j.ejmg.2021.104334
Montpetit, A. et al. Disruption of AP1S1, causing a novel neurocutaneous syndrome, perturbs development of the skin and spinal cord. PLoS Genet. 4, e1000296 (2008).
doi: 10.1371/journal.pgen.1000296
Alsaif, H. S. et al. Homozygous loss-of-function mutations in AP1B1, encoding beta-1 subunit of adaptor-related protein complex 1, cause MEDNIK-like syndrome. Am. J. Hum. Genet. 105, 1016–1022 (2019).
doi: 10.1016/j.ajhg.2019.09.020
Wang, H. et al. Gain-of-function mutations in TRPM4 activation gate cause progressive symmetric erythrokeratodermia. J. Invest. Dermatol. 139, 1089–1097 (2019).
doi: 10.1016/j.jid.2018.10.044
Nakabayashi, K. et al. Identification of C7orf11 (TTDN1) gene mutations and genetic heterogeneity in nonphotosensitive trichothiodystrophy. Am. J. Hum. Genet. 76, 510 (2005).
doi: 10.1086/428141
Zhang, Y. et al. TTDN1 is a Plk1-interacting protein involved in maintenance of cell cycle integrity. Cell. Mol. Life Sci. 64, 632–640 (2007).
doi: 10.1007/s00018-007-6501-8
Schmuth, M., Gruber, R., Elias, P. M. & Williams, M. L. Ichthyosis update: towards a function-driven model of pathogenesis of the disorders of cornification and the role of corneocyte proteins in these disorders. Adv. Dermatol. 23, 231 (2007).
doi: 10.1016/j.yadr.2007.07.011
Albert, A., Alexander, D. & Boesze-Battaglia, K. Cholesterol in the rod outer segment: a complex role in a ‘simple’ system. Chem. Phys. Lipids 199, 94–105 (2016).
doi: 10.1016/j.chemphyslip.2016.04.008
Cortes, V. A. et al. Physiological and pathological implications of cholesterol. Front. Biosci. (Landmark Ed.) 19, 416–428 (2014).
doi: 10.2741/4216
Gault, C. R., Obeid, L. M. & Hannun, Y. A. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688, 1–23 (2010).
doi: 10.1007/978-1-4419-6741-1_1
Delmar, M. & McKenna, W. J. The cardiac desmosome and arrhythmogenic cardiomyopathies. Circ. Res. 107, 700–714 (2010).
doi: 10.1161/CIRCRESAHA.110.223412
Boyden, L. M. et al. Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome. Hum. Mol. Genet. 25, 348 (2016).
doi: 10.1093/hmg/ddv481
Kurzen, H. et al. Compositionally different desmosomes in the various compartments of the human hair follicle. Differentiation 63, 295–304 (1998).
doi: 10.1046/j.1432-0436.1998.6350295.x
Martínez, A. D., Acuña, R., Figueroa, V., Maripillan, J. & Nicholson, B. Gap-junction channels dysfunction in deafness and hearing loss. Antioxid. Redox Signal. 11, 309 (2009).
doi: 10.1089/ars.2008.2138
Duncker, S. V. et al. Otoferlin couples to clathrin-mediated endocytosis in mature cochlear inner hair cells. J. Neurosci. 33, 9508–9519 (2013).
doi: 10.1523/JNEUROSCI.5689-12.2013
Sidiropoulos, P. N. M. et al. Dynamin 2 mutations in Charcot-Marie-Tooth neuropathy highlight the importance of clathrin-mediated endocytosis in myelination. Brain 135, 1395–1411 (2012).
doi: 10.1093/brain/aws061
Malik, K. et al. Ichthyosis molecular fingerprinting shows profound T
doi: 10.1016/j.jaci.2018.03.021
Paller, A. S. et al. An IL-17–dominant immune profile is shared across the major orphan forms of ichthyosis. J. Allergy Clin. Immunol. 139, 152–165 (2017).
doi: 10.1016/j.jaci.2016.07.019
Tham, K. C. et al. Distinct skin microbiome community structures in congenital ichthyosis. Br. J. Dermatol. 187, 557–570 (2022).
doi: 10.1111/bjd.21687
Traupe, H., Fischer, J. & Oji, V. Nonsyndromic types of ichthyoses-an update. J. Dtsch Dermatol. Ges. 12, 109–121 (2014).
Akiyama, M. ABCA12 mutations and autosomal recessive congenital ichthyosis: a review of genotype/phenotype correlations and of pathogenetic concepts. Hum. Mutat. 31, 1090–1096 (2010).
doi: 10.1002/humu.21326
Rajpopat, S. et al. Harlequin ichthyosis: a review of clinical and molecular findings in 45 cases. Arch. Dermatol. 147, 681–686 (2011).
doi: 10.1001/archdermatol.2011.9
Shibata, A. & Akiyama, M. Epidemiology, medical genetics, diagnosis and treatment of harlequin ichthyosis in Japan. Pediatr. Int. 57, 516–522 (2015).
doi: 10.1111/ped.12638
Elias, P. M. et al. Basis for abnormal desquamation and permeability barrier dysfunction in RXLI. J. Invest. Dermatol. 122, 314–319 (2004).
doi: 10.1046/j.1523-1747.2003.22258.x
Simpson, J. K. et al. Genotype–phenotype correlation in a large English cohort of patients with autosomal recessive ichthyosis. Br. J. Dermatol. 182, 729–737 (2020).
doi: 10.1111/bjd.18211
Chiramel, M. J. et al. Genotype of autosomal recessive congenital ichthyosis from a tertiary care center in India. Pediatr. Dermatol. 39, 420–424 (2022).
doi: 10.1111/pde.14944
Sun, Q. et al. The genomic and phenotypic landscape of ichthyosis: an analysis of 1000 kindreds. JAMA Dermatol. 158, 16–25 (2022).
doi: 10.1001/jamadermatol.2021.4242
Cuperus, E. et al. Proposal for a 6-step approach for differential diagnosis of neonatal erythroderma. J. Eur. Acad. Dermatol. Venereol. 36, 973–986 (2022). This publication provides a diagnostic approach to ichthyosis in newborns.
doi: 10.1111/jdv.18043
Cakmak, E. & Bagci, G. Chanarin-dorfman syndrome: a comprehensive review. Liver Int. 41, 905–914 (2021).
doi: 10.1111/liv.14794
Zhou, Y. & Zhang, J. Arthrogryposis–renal dysfunction–cholestasis (ARC) syndrome: from molecular genetics to clinical features. Ital. J. Pediatr. 40, 77 (2014).
doi: 10.1186/s13052-014-0077-3
Metze, D., Traupe, H. & Süßmuth, K. Ichthyoses—a clinical and pathological spectrum from heterogeneous cornification disorders to inflammation. Dermatopathology 8, 107 (2021).
doi: 10.3390/dermatopathology8020017
Ong, C. et al. LEKTI demonstrable by immunohistochemistry of the skin: a potential diagnostic skin test for Netherton syndrome. Br. J. Dermatol. 151, 1253–1257 (2004).
doi: 10.1111/j.1365-2133.2004.06180.x
Smith, V. V., Anderson, G., Malone, M. & Sebire, N. J. Light microscopic examination of scalp hair samples as an aid in the diagnosis of paediatric disorders: retrospective review of more than 300 cases from a single centre. J. Clin. Pathol. 58, 1294–1298 (2005).
doi: 10.1136/jcp.2005.027581
Rodríguez-Pazos, L., Ginarte, M., Vega, A. & Toribio, J. Autosomal recessive congenital ichthyosis. Actas Dermosifiliogr. 104, 270–284 (2017).
doi: 10.1016/j.ad.2011.11.015
Liu, J. et al. Case report: prenatal diagnosis of a fetus with harlequin ichthyosis identifies novel compound heterozygous variants: a case report. Front. Genet. 11, 1756 (2021).
doi: 10.3389/fgene.2020.608196
Jian, W. et al. Prenatal diagnose of a fetus with Harlequin ichthyosis in a Chinese family. Taiwan. J. Obstet. Gynecol. 57, 452–455 (2018).
doi: 10.1016/j.tjog.2018.04.023
Hongyan, L. et al. Early warning of low maternal unconjugated estriol level by prenatal screening for fetus with X-linked ichthyosis [Chinese]. Zhonghua Fu Chan Ke Za Zhi 57, 407–412 (2022).
Rathore, S., David, L. S., Beck, M. M., Bindra, M. S. & Arunachal, G. Harlequin ichthyosis: prenatal diagnosis of a rare yet severe genetic dermatosis. J. Clin. Diagn. Res. 9, QDO4–QD06 (2015).
Tang, X. et al. Maternal Xp22.31 copy-number variations detected in non-invasive prenatal screening effectively guide the prenatal diagnosis of X-linked ichthyosis. Front. Genet. 13, 934952 (2022).
doi: 10.3389/fgene.2022.934952
Parikh, F. et al. Evolution and utility of preimplantation genetic testing for monogenic disorders in assisted reproduction - a narrative review. J. Hum. Reprod. Sci. 14, 329 (2021).
doi: 10.4103/jhrs.jhrs_148_21
Hernández-Martin, A., Aranegui, B., Martin-Santiago, A. & Garcia-Doval, I. A systematic review of clinical trials of treatments for the congenital ichthyoses, excluding ichthyosis vulgaris. J. Am. Acad. Dermatol. 69, 544–549.e8 (2013).
doi: 10.1016/j.jaad.2013.05.017
Vahlquist, A., Gånemo, A. & Virtanen, M. Congenital ichthyosis: an overview of current and emerging therapies. Acta Derm. Venereol. 88, 4–14 (2008).
doi: 10.2340/00015555-0415
Wohlrab, J. Influence of keratolytics on cutaneous pharmacokinetics of glucocorticoids. J. Dtsch Dermatol. Ges. 19, 554–561 (2021).
Ramírez, M. E. et al. Acute percutaneous lactic acid poisoning in a child. Pediatr. Dermatol. 23, 282–285 (2006).
doi: 10.1111/j.1525-1470.2006.00236.x
Madan, R. K. & Levitt, J. A review of toxicity from topical salicylic acid preparations. J. Am. Acad. Dermatol. 70, 788–792 (2014).
doi: 10.1016/j.jaad.2013.12.005
Menter, A. et al. Guidelines of care for the management of psoriasis and psoriatic arthritis. Section 3. Guidelines of care for the management and treatment of psoriasis with topical therapies. J. Am. Acad. Dermatol. 60, 643–659 (2009).
doi: 10.1016/j.jaad.2008.12.032
Hanson, B. et al. Ectropion improvement with topical tazarotene in children with lamellar ichthyosis. Pediatr. Dermatol. 34, 584–589 (2017).
doi: 10.1111/pde.13240
Ogawa, M. & Akiyama, M. Successful topical adapalene treatment for the facial lesions of an adolescent case of epidermolytic ichthyosis. J. Am. Acad. Dermatol. 71, e103–e105 (2014).
doi: 10.1016/j.jaad.2014.04.010
Hofmann, B., Stege, H., Ruzicka, T. & Lehmann, P. Effect of topical tazarotene in the treatment of congenital ichthyoses. Br. J. Dermatol. 141, 642–646 (1999).
doi: 10.1046/j.1365-2133.1999.03101.x
Nguyen, V., Cunningham, B. B., Eichenfield, L. F., Alió, A. B. & Buka, R. L. Treatment of ichthyosiform diseases with topically applied tazarotene: risk of systemic absorption. J. Am. Acad. Dermatol. 57 (Suppl. 5), S123–S125 (2007).
doi: 10.1016/j.jaad.2006.05.028
Teng, J. M. C. et al. The CONTROL study: a randomized, double-blind vehicle-controlled phase 2b study of novel topical isotretinoin formulation demonstrates improvement in recessive X-linked and autosomal recessive lamellar congenital ichthyosis. J. Am. Acad. Dermatol. 87, 1455–1458 (2022).
doi: 10.1016/j.jaad.2022.07.028
Milstone, L. M. Scaly skin and bath pH: rediscovering baking soda. J. Am. Acad. Dermatol. 62, 885–886 (2010).
doi: 10.1016/j.jaad.2009.04.011
Traupe, H. & Happle, R. Alopecia ichthyotica. A characteristic feature of congenital ichthyosis. Dermatologica 167, 225–230 (1983).
doi: 10.1159/000249787
Mazereeuw-Hautier, J. et al. Chronic ulceration of the scalp associated with genetically different types of congenital ichthyosis: a series of four cases. Acta Derm. Venereol. 101, 959 (2021).
doi: 10.2340/00015555-3720
Ogiso, T. et al. Transfollicular drug delivery: penetration of drugs through human scalp skin and comparison of penetration between scalp and abdominal skins in vitro. J. Drug Target. 10, 369–378 (2002).
doi: 10.1080/1061186021000001814
Tada, Y. et al. Treatment patterns, healthcare resource utilization, and costs in patients with moderate-to-severe psoriasis treated with systemic therapy in Japan: a retrospective claims database study. J. Dermatol. 49, 1106–1117 (2022).
doi: 10.1111/1346-8138.16543
Verfaille, C. J., Vanhoutte, F. P., Blanchet-Bardon, C., Van Steensel, M. A. & Steijlen, P. M. Oral liarozole vs. acitretin in the treatment of ichthyosis: a phase II/III multicentre, double-blind, randomized, active-controlled study. Br. J. Dermatol. 156, 965–973 (2007).
doi: 10.1111/j.1365-2133.2006.07745.x
Vahlquist, A. et al. Oral liarozole in the treatment of patients with moderate/severe lamellar ichthyosis: results of a randomized, double-blind, multinational, placebo-controlled phase II/III trial. Br. J. Dermatol. 170, 173–181 (2014).
doi: 10.1111/bjd.12626
Common, J. E. A. et al. Clinical and genetic heterogeneity of erythrokeratoderma variabilis. J. Invest. Dermatol. 125, 920–927 (2005).
doi: 10.1111/j.0022-202X.2005.23919.x
Zaenglein, A. L. et al. Consensus recommendations for the use of retinoids in ichthyosis and other disorders of cornification in children and adolescents. Pediatr. Dermatol. 38, 164 (2021).
doi: 10.1111/pde.14408
Katugampola, R. P. & Finlay, A. Y. Oral retinoid therapy for disorders of keratinization: single-centre retrospective 25 years’ experience on 23 patients. Br. J. Dermatol. 154, 267–276 (2006).
doi: 10.1111/j.1365-2133.2005.06906.x
Stern, R. S. et al. The safety of etretinate as long-term therapy for psoriasis: results of the etretinate follow-up study. J. Am. Acad. Dermatol. 33, 44–52 (1995).
doi: 10.1016/0190-9622(95)90008-X
Digiovanna, J. J., Mauro, T., Milstone, L. M., Schmuth, M. & Toro, J. R. Systemic retinoids in the management of ichthyoses and related skin types. Dermatol. Ther. 26, 26–38 (2013).
doi: 10.1111/j.1529-8019.2012.01527.x
Larsen, F. G. et al. Acitretin is converted to etretinate only during concomitant alcohol intake. Br. J. Dermatol. 143, 1164–1169 (2000).
doi: 10.1046/j.1365-2133.2000.03883.x
Baden, H. P., Buxman, M. M., Weinstein, G. D. & Yoder, F. W. Treatment of ichthyosis with isotretinoin. J. Am. Acad. Dermatol. 6, 716–720 (1982).
doi: 10.1016/S0190-9622(82)70062-3
Onnis, G. et al. Alitretinoin reduces erythema in inherited ichthyosis. Orphanet J. Rare Dis. 13, 1–6 (2018).
doi: 10.1186/s13023-018-0783-9
Czarnowicki, T. et al. The major orphan forms of ichthyosis are characterized by systemic T-cell activation and Th-17/Tc-17/Th-22/Tc-22 polarization in blood. J. Invest. Dermatol. 138, 2157–2167 (2018).
doi: 10.1016/j.jid.2018.03.1523
Paller, A. S. Profiling immune expression to consider repurposing therapeutics for the ichthyoses. J. Invest. Dermatol. 139, 535–540 (2019).
doi: 10.1016/j.jid.2018.08.027
Paller, A. S. et al. The spectrum of manifestations in desmoplakin gene (DSP) spectrin repeat 6 domain mutations: immunophenotyping and response to ustekinumab. J. Am. Acad. Dermatol. 78, 498–505.e2 (2018).
doi: 10.1016/j.jaad.2017.10.026
Sun, Q., Wine Lee, L., Hall, E. K., Choate, K. A. & Elder, R. W. Hair and skin predict cardiomyopathies: carvajal and erythrokeratodermia cardiomyopathy syndromes. Pediatr. Dermatol. 38, 31–38 (2021).
doi: 10.1111/pde.14478
Hernández-Martín, A. et al. Imbalance in T-helper 17 cells and targeted therapy in an infant with SAM-like syndrome. N. Engl. J. Med. 381, 2176–2178 (2019).
doi: 10.1056/NEJMc1908531
Godsel, L. M. et al. Translational implications of Th17-skewed inflammation due to genetic deficiency of a cadherin stress sensor. J. Clin. Invest. 132, e144363 (2022).
doi: 10.1172/JCI144363
Yogarajah, J. et al. Efficacy and safety of secukinumab for the treatment of severe ABCA12 deficiency-related ichthyosis in a child. Skin Health Dis. 1, e25 (2021).
doi: 10.1002/ski2.25
Lefferdink, R. et al. Secukinumab responses vary across the spectrum of congenital ichthyosis in adults. Arch. Dermatol. Res. https://doi.org/10.1007/S00403-022-02325-3 (2022).
doi: 10.1007/S00403-022-02325-3
Barbieux, C. et al. Netherton syndrome subtypes share IL-17/IL-36 signature with distinct IFN-α and allergic responses. J. Allergy Clin. Immunol. 149, 1358–1372 (2022).
doi: 10.1016/j.jaci.2021.08.024
Wang, J. et al. Successful treatment of Netherton syndrome with dupilumab: a case report and review of the literature. J. Dermatol. 49, 165–167 (2022).
doi: 10.1111/1346-8138.16253
De Palma, A. M. et al. Burden of itch in ichthyosis: a multicentre study in 94 patients. J. Eur. Acad. Dermatol. Venereol. 33, 2095–2100 (2019).
doi: 10.1111/jdv.15613
Süßmuth, K. et al. Response to dupilumab in two children with Netherton syndrome: improvement of pruritus and scaling. J. Eur. Acad. Dermatol. Venereol. 35, e152–e155 (2021).
doi: 10.1111/jdv.16883
Volc, S., Maier, L., Gritsch, A., Aichelburg, M. C. & Volc-Platzer, B. Successful treatment of Netherton syndrome with ustekinumab in a 15-year-old girl. Br. J. Dermatol. 183, 165–167 (2020).
doi: 10.1111/bjd.18892
Markó, L. et al. Keratinocyte ATP binding cassette transporter expression is regulated by ultraviolet light. J. Photochem. Photobiol. B. 116, 79–88 (2012).
doi: 10.1016/j.jphotobiol.2012.06.007
Malhotra, R., Hernández-Martln, A. & Oji, V. Ocular manifestations, complications and management of congenital ichthyoses: a new look. Br. J. Ophthalmol. 102, 586–592 (2018).
doi: 10.1136/bjophthalmol-2017-310615
Litwin, A. S. et al. Nonsurgical treatment of congenital ichthyosis cicatricial ectropion and eyelid retraction using Restylane hyaluronic acid. Br. J. Dermatol. 173, 601–603 (2015).
doi: 10.1111/bjd.13710
Zachara, M. G., Drozdowski, P. H. & Łatkowski, I. T. Surgical management of ichtyosis-related ectropion. Description of four cases and a Literature review. J. Plast. Surg. Hand Surg. 48, 179–182 (2014).
doi: 10.3109/2000656X.2013.842923
Martín-Santiago, A., Rodríguez-Pascual, M., Knöpfel, N. & Hernández-Martín, A. Otologic manifestations of autosomal recessive congenital ichthyosis in children. Actas Dermosifiliogr. 106, 733–739 (2015).
doi: 10.1016/j.ad.2015.06.003
Jamal, A., Alsabea, A. & Tarakmeh, M. Effect of ear infections on hearing ability: a narrative review on the complications of otitis media. Cureus 14, e27400 (2022).
Rodríguez-Manchón, S., Pedrón-Giner, C., Cañedo-Villarroya, E., Muñoz-Codoceo, R. A. & Hernández-Martín, Á. Malnutrition in children with ichthyosis: recommendations for monitoring from a multidisciplinary clinic experience. J. Am. Acad. Dermatol. 85, 144–151 (2021).
doi: 10.1016/j.jaad.2020.06.064
Sethuraman, G. et al. Vitamin D: a new promising therapy for congenital ichthyosis. Pediatrics 137, e20151313 (2016).
doi: 10.1542/peds.2015-1313
Dreyfus, I. et al. Factors associated with impaired quality of life in adult patients suffering from ichthyosis. Acta Derm. Venereol. 94, 344–346 (2014). This publication reports statistical analysis of the factors affecting QoL in patients with ichthyosis.
doi: 10.2340/00015555-1710
Quittkat, H. L., Hartmann, A. S., Düsing, R., Buhlmann, U. & Vocks, S. Body dissatisfaction, importance of appearance, and body appreciation in men and women over the lifespan. Front. Psychiatry 10, 864 (2019).
doi: 10.3389/fpsyt.2019.00864
Dreyfus, I. et al. Burden of inherited ichthyosis: a French national survey. Acta Derm. Venereol. 95, 326–328 (2015).
doi: 10.2340/00015555-1955
Mazereeuw-Hautier, J. et al. Factors influencing quality of life in patients with inherited ichthyosis: a qualitative study in adults using focus groups. Br. J. Dermatol. 166, 646–648 (2012).
doi: 10.1111/j.1365-2133.2011.10701.x
Cortés, H. et al. Increased risk of depression and impairment in quality of life in patients with lamellar ichthyosis. Dermatol. Ther. 34, e14628 (2021).
doi: 10.1111/dth.14628
Cannon Homaei, S. et al. ADHD symptoms in neurometabolic diseases: underlying mechanisms and clinical implications. Neurosci. Biobehav. Rev. 132, 838–856 (2022).
doi: 10.1016/j.neubiorev.2021.11.012
Bodemer, C. et al. Short- and medium-term efficacy of specific hydrotherapy in inherited ichthyosis. Br. J. Dermatol. 165, 1087–1094 (2011).
doi: 10.1111/j.1365-2133.2011.10510.x
Young, I. D. & Hughes, H. E. Sex-linked mental retardation, short stature, obesity and hypogonadism: report of a family. J. Ment. Defic. Res. 26, 153–162 (1982).
Amano, R., Ohtsuka, Y. & Ohtahara, S. Monozygotic twin patients with congenital ichthyosis, microcephalus, spastic quadriplegia, myoclonus, and EEG abnormalities. Pediatr. Neurol. 12, 255–259 (1995).
doi: 10.1016/0887-8994(95)00025-B
Jagell, S. F., Holmgren, G. & Hofer, P. Congenital ichthyosis with alopecia, eclabion, ectropion and mental retardation–a new genetic syndrome. Clin. Genet. 31, 102–108 (1987).
doi: 10.1111/j.1399-0004.1987.tb02777.x
Harper, P. S., Marks, R., Dykes, P. J. & Young, I. D. Ichthyosis, hepatosplenomegaly, and cerebellar degeneration in a sibship. J. Med. Genet. 17, 212–215 (1980).
doi: 10.1136/jmg.17.3.212
Passwell, J. H., Goodman, R. M., Ziprkowski, M. & Cohen, B. E. Congenital ichthyosis, mental retardation, dwarfism and renal impairment: a new syndrome. Clin. Genet. 8, 59–65 (1975).
doi: 10.1111/j.1399-0004.1975.tb01955.x
Clayton-Smith, J. & Donnai, D. A new recessive syndrome of unusual facies, digital abnormalities, and ichthyosis. J. Med. Genet. 26, 339–342 (1989).
doi: 10.1136/jmg.26.5.339
Capra, R. et al. Two sisters with multiple sclerosis, lamellar ichthyosis, beta thalassaemia minor and a deficiency of factor VIII. J. Neurol. 240, 336–338 (1993).
doi: 10.1007/BF00839963
Gunal, I., Taymaz, A., Karatosun, V., Toylu, A. & Degirmenci, B. Mixed sclerosing dysplasia of the bone associated with ovarian and skin problems. Clin. Orthop. Relat. Res. 436, 270–276 (2005).
doi: 10.1097/01.blo.0000162996.94098.f9
Liao, H. et al. Filaggrin mutations are genetic modifying factors exacerbating X-linked ichthyosis. J. Invest. Dermatol. 127, 2795–2798 (2007).
doi: 10.1038/sj.jid.5700971
Mohamad, J. et al. Phenotypic suppression of acral peeling skin syndrome in a patient with autosomal recessive congenital ichthyosis. Exp. Dermatol. 29, 742–748 (2020).
doi: 10.1111/exd.14140
Ngcungcu, T. et al. Duplicated enhancer region increases expression of CTSB and segregates with keratolytic winter erythema in South African and Norwegian families. Am. J. Hum. Genet. 100, 737–750 (2017).
doi: 10.1016/j.ajhg.2017.03.012
Bochner, R. et al. Calpain 12 function revealed through the study of an atypical case of autosomal recessive congenital ichthyosis. J. Invest. Dermatol. 137, 385–393 (2017).
doi: 10.1016/j.jid.2016.07.043
Joosten, M. D. W., Clabbers, J. M. K., Jonca, N., Mazereeuw-Hautier, J. & Gostyński, A. H. New developments in the molecular treatment of ichthyosis: review of the literature. Orphanet J. Rare Dis. 17, 269 (2022).
doi: 10.1186/s13023-022-02430-6
Kallis, P., Bisbee, E., Garganta, C. & Schoch, J. J. Rapid improvement of skin lesions in CHILD syndrome with topical 5% simvastatin ointment. Pediatr. Dermatol. 39, 151–152 (2022).
doi: 10.1111/pde.14865
Paller, A. S. et al. Pathogenesis-based therapy reverses cutaneous abnormalities in an inherited disorder of distal cholesterol metabolism. J. Invest. Dermatol. 131, 2242–2248 (2011).
doi: 10.1038/jid.2011.189
Atzmony, L. et al. Topical cholesterol/lovastatin for the treatment of porokeratosis: a pathogenesis-directed therapy. J. Am. Acad. Dermatol. 82, 123–131 (2020).
doi: 10.1016/j.jaad.2019.08.043
Chulpanova, D. S. et al. Current strategies for the gene therapy of autosomal recessive congenital ichthyosis and other types of inherited ichthyosis. Int. J. Mol. Sci. 23, 2506 (2022). This review discusses the treatment of ichthyosis with an emphasis on novel gene therapy studies.
doi: 10.3390/ijms23052506
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04047732 (2022).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01545323 (2022).
Plank, R. et al. Transglutaminase 1 replacement therapy successfully mitigates the autosomal recessive congenital ichthyosis phenotype in full-thickness skin disease equivalents. J. Invest. Dermatol. 139, 1191–1195 (2019).
doi: 10.1016/j.jid.2018.11.002
Aufenvenne, K. et al. Topical enzyme-replacement therapy restores transglutaminase 1 activity and corrects architecture of transglutaminase-1-deficient skin grafts. Am. J. Hum. Genet. 93, 620–630 (2013).
doi: 10.1016/j.ajhg.2013.08.003
Valentin, F. et al. Development of a pathogenesis-based therapy for peeling skin syndrome type 1. Br. J. Dermatol. 184, 1123–1131 (2021).
doi: 10.1111/bjd.19546
Zani, M. B., Sant’Ana, A. M., Tognato, R. C., Chagas, J. R. & Puzer, L. Human tissue kallikreins-related peptidases are targets for the treatment of skin desquamation diseases. Front. Med. 8, 777619 (2022).
doi: 10.3389/fmed.2021.777619
Liddle, J. et al. A potent and selective kallikrein-5 inhibitor delivers high pharmacological activity in skin from patients with netherton syndrome. J. Invest. Dermatol. 141, 2272–2279 (2021).
doi: 10.1016/j.jid.2021.01.029
Crumrine, D. et al. Mutations in recessive congenital ichthyoses illuminate the origin and functions of the corneocyte lipid envelope. J. Invest. Dermatol. 139, 760–768 (2019).
doi: 10.1016/j.jid.2018.11.005
Veit, J. G. S. et al. Characterization of CYP26B1-selective inhibitor, DX314, as a potential therapeutic for keratinization disorders. J. Invest. Dermatol. 141, 72–83.e6 (2021).
doi: 10.1016/j.jid.2020.05.090
Kurosawa, M. et al. Epidemiology and clinical characteristics of bullous congenital ichthyosiform erythroderma (keratinolytic ichthyosis) in Japan: results from a nationwide survey. J. Am. Acad. Dermatol. 68, 278–283 (2013).
doi: 10.1016/j.jaad.2012.06.044
Müller, F. B. et al. A human keratin 10 knockout causes recessive epidermolytic hyperkeratosis. Hum. Mol. Genet. 15, 1133–1141 (2006).
doi: 10.1093/hmg/ddl028
Sybert, V. P. et al. Cyclic ichthyosis with epidermolytic hyperkeratosis: a phenotype conferred by mutations in the 2B domain of keratin K1. Am. J. Hum. Genet. 64, 732 (1999).
doi: 10.1086/302278
Joh, G. Y. et al. A novel dinucleotide mutation in keratin 10 in the annular epidermolytic ichthyosis variant of bullous congenital ichthyosiform erythroderma. J. Invest. Dermatol. 108, 357–361 (1997).
doi: 10.1111/1523-1747.ep12286491
Tsubota, A. et al. Keratin 1 gene mutation detected in epidermal nevus with epidermolytic hyperkeratosis. J. Invest. Dermatol. 127, 1371–1374 (2007).
doi: 10.1038/sj.jid.5700712
Paller, S. et al. Genetic and clinical mosaicism in a type of epidermal nevus. N. Engl. J. Med. 331, 1408–1415 (1994).
doi: 10.1056/NEJM199411243312103
Diociaiuti, A. et al. First case of KRT2 epidermolytic nevus and novel clinical and genetic findings in 26 Italian patients with keratinopathic ichthyoses. Int. J. Mol. Sci. 21, 7707 (2020).
doi: 10.3390/ijms21207707
Sprecher, E. et al. Evidence for novel functions of the keratin tail emerging from a mutation causing ichthyosis hystrix. J. Invest. Dermatol. 116, 511–519 (2001).
doi: 10.1046/j.1523-1747.2001.01292.x
Choate, K. A. et al. Frequent somatic reversion of KRT1 mutations in ichthyosis with confetti. J. Clin. Invest. 125, 1703–1707 (2015).
doi: 10.1172/JCI64415
Choate, K. A. et al. Mitotic recombination in patients with ichthyosis causes reversion of dominant mutations in KRT10. Science 330, 94 (2010).
doi: 10.1126/science.1192280
Lesueur, F. et al. Novel mutations in ALOX12B in patients with autosomal recessive congenital ichthyosis and evidence for genetic heterogeneity on chromosome 17p13. J. Invest. Dermatol. 127, 829–834 (2007).
doi: 10.1038/sj.jid.5700640
Sugiura, K. & Akiyama, M. Lamellar ichthyosis caused by a previously unreported homozygous ALOXE3 mutation in East Asia. Acta Derm. Venereol. 95, 858–859 (2015).
Laiho, E. et al. Transglutaminase 1 mutations in autosomal recessive congenital ichthyosis: private and recurrent mutations in an isolated population. Am. J. Hum. Genet. 61, 529–538 (1997).
doi: 10.1086/515498
Kelsell, D. P. et al. Mutations in ABCA12 underlie the severe congenital skin disease harlequin ichthyosis. Am. J. Hum. Genet. 76, 794–803 (2005).
doi: 10.1086/429844
Harting, M. et al. Self-healing collodion membrane and mild nonbullous congenital ichthyosiform erythroderma due to 2 novel mutations in the ALOX12B gene. Arch. Dermatol. 144, 351–356 (2008).
doi: 10.1001/archderm.144.3.351
Vahlquist, A. et al. Genotypic and clinical spectrum of self-improving collodion ichthyosis: ALOX12B, ALOXE3, and TGM1 mutations in Scandinavian patients. J. Invest. Dermatol. 130, 438–443 (2010).
doi: 10.1038/jid.2009.346
Noguera-Morel, L. et al. Two cases of autosomal recessive congenital ichthyosis due to CYP4F22 mutations: expanding the genotype of self-healing collodion baby. Pediatr. Dermatol. 33, e48–e51 (2016).
doi: 10.1111/pde.12740
Raghunath, M. et al. Self-healing collodion baby: a dynamic phenotype explained by a particular transglutaminase-1 mutation. J. Invest. Dermatol. 120, 224–228 (2003).
doi: 10.1046/j.1523-1747.2003.12032.x
Mazereeuw-Hautier, J. et al. Acral self-healing collodion baby: report of a new clinical phenotype caused by a novel TGM1 mutation. Br. J. Dermatol. 161, 456–463 (2009).
doi: 10.1111/j.1365-2133.2009.09277.x
Oji, V. et al. Bathing suit ichthyosis is caused by transglutaminase-1 deficiency: evidence for a temperature-sensitive phenotype. Hum. Mol. Genet. 15, 3083–3097 (2006).
doi: 10.1093/hmg/ddl249
Takeichi, T. et al. Biallelic mutations in KDSR disrupt ceramide synthesis and result in a spectrum of keratinization disorders associated with thrombocytopenia. J. Invest. Dermatol. 137, 2344 (2017).
doi: 10.1016/j.jid.2017.06.028
Ma, W. et al. Novel microdeletion in the X chromosome leads to kallmann syndrome, ichthyosis, obesity, and strabismus. Front. Genet. 11, 596 (2020).
doi: 10.3389/fgene.2020.00596
Milunsky, J. M., Maher, T. A. & Metzenberg, A. B. Molecular, biochemical, and phenotypic analysis of a hemizygous male with a severe atypical phenotype for X-linked dominant Conradi-Hunermann-Happle syndrome and a mutation in EBP. Am. J. Med. Genet. A 116A, 249–254 (2003).
doi: 10.1002/ajmg.a.10849
Gruber, R. et al. Autosomal recessive keratoderma-ichthyosis-deafness (ARKID) syndrome is caused by VPS33B mutations affecting rab protein interaction and collagen modification. J. Invest. Dermatol. 137, 845–854 (2017).
doi: 10.1016/j.jid.2016.12.010
Norgett, E. E. et al. Recessive mutation in desmoplakin disrupts desmoplakin–intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. Mol. Genet. 9, 2761–2766 (2000).
doi: 10.1093/hmg/9.18.2761
Muttardi, K., Nitoiu, D., Kelsell, D. P., O’Toole, E. A. & Batta, K. Acral peeling skin syndrome associated with a novel CSTA gene mutation. Clin. Exp. Dermatol. 41, 394–398 (2016).
doi: 10.1111/ced.12777
Titeux, M. et al. Keratitis-ichthyosis-deafness syndrome caused by GJB2 maternal mosaicism. J. Invest. Dermatol. 129, 776–779 (2009).
doi: 10.1038/jid.2008.312
Boyden, L. M. et al. Recessive mutations in AP1B1 cause ichthyosis, deafness, and photophobia. Am. J. Hum. Genet. 105, 1023 (2019).
doi: 10.1016/j.ajhg.2019.09.021
Wick, M. R. & Patterson, J. W. Cutaneous paraneoplastic syndromes. Semin. Diagn. Pathol. 36, 211–228 (2019).
doi: 10.1053/j.semdp.2019.01.001
López Aventín, D., Gallardo, F., Yébenes, M., Lloreta, J. & Pujol, R. M. Acquired ichthyosis associated with primary cutaneous CD30+lymphoproliferative disorders. Eur. J. Dermatol. 24, 105–106 (2014).
doi: 10.1684/ejd.2013.2225
Badawy, E. et al. Ichthyosiform mycosis fungoides. Eur. J. Dermatol. 12, 594–596 (2002).
Ramos-e-Silva, M., Carvalho, J. C. & Carneiro, S. C. Cutaneous paraneoplasia. Clin. Dermatol. 29, 541–547 (2011).
doi: 10.1016/j.clindermatol.2010.09.022
Lee, H. W. et al. Acquired ichthyosis associated with an overlap syndrome of systemic sclerosis and systemic lupus erythematosus. J. Dermatol. 33, 52–54 (2006).
doi: 10.1111/j.1346-8138.2006.00010.x
Valle, S. L. Dermatologic findings related to human immunodeficiency virus infection in high-risk individuals. J. Am. Acad. Dermatol. 17, 951–961 (1987).
doi: 10.1016/S0190-9622(87)70284-9
Holzman, S. B. & Durso, S. C. Nutritional deficiency and acquired ichthyosis. J. Gen. Intern. Med. 32, 1161 (2017).
doi: 10.1007/s11606-017-4070-6
Menni, S., Boccardi, D. & Brusasco, A. Ichthyosis revealing coeliac disease. Eur. J. Dermatol. 10, 398–399 (2000).
Sparsa, A. et al. Acquired ichthyosis with pravastatin. J. Eur. Acad. Dermatol. Venereol. 21, 549–550 (2007).
Errichetti, E., Stinco, G., Pegolo, E. & Patrone, P. Acquired ichthyosis during acitretin therapy for psoriasis vulgaris. J. Eur. Acad. Dermatol. Venereol. 30, 181–182 (2016).
doi: 10.1111/jdv.12690
Riley, C. A., Badri, T. & Hafsi, W. Pityriasis Rotunda. StatPearls [online] https://www.ncbi.nlm.nih.gov/books/NBK459240/ (updated 12 Sep 2022).
Berkowitz, I., Hodkinson, H. J., Kew, M. C. & DiBisceglie, A. M. Pityriasis rotunda as a cutaneous marker of hepatocellular carcinoma: a comparison with its prevalence in other diseases. Br. J. Dermatol. 120, 545–549 (1989).
doi: 10.1111/j.1365-2133.1989.tb01329.x

Auteurs

Carlos Gutiérrez-Cerrajero (C)

Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.
Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain.

Eli Sprecher (E)

Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Amy S Paller (AS)

Departments of Dermatology and Paediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

Masashi Akiyama (M)

Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.

Juliette Mazereeuw-Hautier (J)

Centre for Rare Skin Diseases, Dermatology Department, Larrey Hospital, Toulouse, France.

Angela Hernández-Martín (A)

Department of Dermatology, Hospital Infantil Niño Jesús, Madrid, Spain. ahernandez@aedv.es.

Rogelio González-Sarmiento (R)

Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.
Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH