Prokaryotic, Microeukaryotic, and Fungal Composition in a Long-Term Polychlorinated Biphenyl-Contaminated Brownfield.
Brownfield
Metabarcoding
Microbial communities
Pollution
Polychlorinated biphenyls
Soil
Journal
Microbial ecology
ISSN: 1432-184X
Titre abrégé: Microb Ecol
Pays: United States
ID NLM: 7500663
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
14
11
2022
accepted:
15
12
2022
medline:
13
9
2023
pubmed:
17
1
2023
entrez:
16
1
2023
Statut:
ppublish
Résumé
Polychlorinated biphenyls (PCBs) are recognized as persistent organic pollutants and accumulate in organisms, soils, waters, and sediments, causing major health and ecological perturbations. Literature reported PCB bio-transformation by fungi and bacteria in vitro, but data about the in situ impact of those compounds on microbial communities remained scarce while being useful to guide biotransformation assays. The present work investigated for the first time microbial diversity from the three-domains-of-life in a long-term contaminated brownfield (a former factory land). Soil samples were ranked according to their PCB concentrations, and a significant increase in abundance was shown according to increased concentrations. Microbial communities structure showed a segregation from the least to the most PCB-polluted samples. Among the identified microorganisms, Bacteria belonging to Gammaproteobacteria class, as well as Fungi affiliated to Saccharomycetes class or Pleurotaceae family, including some species known to transform some PCBs were abundantly retrieved in the highly polluted soil samples.
Identifiants
pubmed: 36646913
doi: 10.1007/s00248-022-02161-y
pii: 10.1007/s00248-022-02161-y
doi:
Substances chimiques
Polychlorinated Biphenyls
DFC2HB4I0K
Soil Pollutants
0
Soil
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1696-1708Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Wall DH, Behan-Pelletier V, Jones TH, et al (2012) Soil ecology and ecosystem services. OUP Oxford
Beaudette LA, Davies S, Fedorak PM et al (1998) Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white rot fungi. Appl Env Microbiol 64:2020–2025
doi: 10.1128/AEM.64.6.2020-2025.1998
Weltgesundheitsorganisation, International Programme on Chemical Safety, Inter-Organization Programme for the Sound Management of Chemicals (2003) Polychlorinated biphenyls: human health aspects. World Health Organization, Geneva
Pointing S (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33. https://doi.org/10.1007/s002530100745
doi: 10.1007/s002530100745
pubmed: 11693920
Arbon RE, Mincher BJ, Knighton WB (1994) Gamma-ray destruction of individual PCB congeners in neutral 2-propanol. Environ Sci Technol 28:2191–2196. https://doi.org/10.1021/es00061a030
doi: 10.1021/es00061a030
pubmed: 22191761
Pieper DH, Seeger M (2008) Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol 15:121–138. https://doi.org/10.1159/000121325
doi: 10.1159/000121325
pubmed: 18685266
Stella T, Covino S, Čvančarová M et al (2017) Bioremediation of long-term PCB-contaminated soil by white-rot fungi. J Hazard Mater 324:701–710. https://doi.org/10.1016/j.jhazmat.2016.11.044
doi: 10.1016/j.jhazmat.2016.11.044
pubmed: 27894756
Tigini V, Prigione V, Di Toro S et al (2009) Isolation and characterisation of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil. Microb Cell Factories 8:5–19. https://doi.org/10.1186/1475-2859-8-5
doi: 10.1186/1475-2859-8-5
Germain J, Raveton M, Binet MN, Mouhamadou B (2021) Screening and metabolic potential of fungal strains isolated from contaminated soil and sediment in the polychlorinated biphenyl degradation. Ecotoxicol Environ Saf 208:111703. https://doi.org/10.1016/j.ecoenv.2020.111703
doi: 10.1016/j.ecoenv.2020.111703
pubmed: 33396034
Hashmi MZ, Qin Z, Yao X et al (2016) PCBs attenuation and abundance of Dehalococcoides spp., bphC, CheA, and flic genes in typical polychlorinated biphenyl-polluted soil under floody and dry soil conditions. Environ Sci Pollut Res 23:3907–3913. https://doi.org/10.1007/s11356-015-5577-1
doi: 10.1007/s11356-015-5577-1
Sharma JK, Gautam RK, Nanekar SV et al (2018) Advances and perspective in bioremediation of polychlorinated biphenyls contaminated soils. Environ Sci Pollut Res Int 25:16355–16375. https://doi.org/10.1007/s11356-017-8995-4
doi: 10.1007/s11356-017-8995-4
pubmed: 28488147
Pino NJ, Múnera LM, Peñuela GA (2019) Phytoremediation of soil contaminated with PCBs using different plants and their associated microbial communities. Int J Phytoremediation 21:316–324. https://doi.org/10.1080/15226514.2018.1524832
doi: 10.1080/15226514.2018.1524832
pubmed: 30648402
Steliga T, Wojtowicz K, Kapusta P, Brzeszcz J (2020) Assessment of biodegradation efficiency of polychlorinated biphenyls (PCBs) and petroleum hydrocarbons (TPH) in soil using three individual bacterial strains and their mixed culture. Molecules 25:709. https://doi.org/10.3390/molecules25030709
doi: 10.3390/molecules25030709
pubmed: 32041368
pmcid: 7036857
Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013. https://doi.org/10.1016/j.procbio.2004.08.006
doi: 10.1016/j.procbio.2004.08.006
Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: Biochemical and molecular features. J Biosci Bioeng 105:433–449. https://doi.org/10.1263/jbb.105.433
doi: 10.1263/jbb.105.433
pubmed: 18558332
Sietmann R, Gesell M, Hammer E, Schauer F (2006) Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives. Chemosphere 64:672–685. https://doi.org/10.1016/j.chemosphere.2005.10.050
doi: 10.1016/j.chemosphere.2005.10.050
pubmed: 16352329
Kohlmeier S, Smits THM, Ford RM et al (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39:4640–4646. https://doi.org/10.1021/es047979z
doi: 10.1021/es047979z
pubmed: 16047804
Wei Y, Wang X, Liu J et al (2011) The population dynamics of bacteria in physically structured habitats and the adaptive virtue of random motility. Proc Natl Acad Sci 108:4047–4052. https://doi.org/10.1073/pnas.1013499108
doi: 10.1073/pnas.1013499108
pubmed: 21325053
pmcid: 3053974
Čvančarová M, Křesinová Z, Filipová A et al (2012) Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere 88:1317–1323. https://doi.org/10.1016/j.chemosphere.2012.03.107
doi: 10.1016/j.chemosphere.2012.03.107
pubmed: 22546633
Mouhamadou B, Faure M, Sage L et al (2013) Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol 117:268–274. https://doi.org/10.1016/j.funbio.2013.02.004
doi: 10.1016/j.funbio.2013.02.004
pubmed: 23622721
Sage L, Périgon S, Faure M et al (2014) Autochthonous ascomycetes in depollution of polychlorinated biphenyls contaminated soil and sediment. Chemosphere 110:62–69. https://doi.org/10.1016/j.chemosphere.2014.03.013
doi: 10.1016/j.chemosphere.2014.03.013
pubmed: 24880600
Zenteno-Rojas A, Martínez-Romero E, Castañeda-Valbuena D et al (2020) Structure and diversity of native bacterial communities in soils contaminated with polychlorinated biphenyls. AMB Express 10:124. https://doi.org/10.1186/s13568-020-01058-8
doi: 10.1186/s13568-020-01058-8
pubmed: 32651884
pmcid: 7351888
Ding N, Hayat T, Wang J et al (2011) Responses of microbial community in rhizosphere soils when ryegrass was subjected to stress from PCBs. J Soils Sediments 11:1355–1362. https://doi.org/10.1007/s11368-011-0412-x
doi: 10.1007/s11368-011-0412-x
Marchal C, Germain J, Raveton M et al (2021) Molecular characterization of fungal biodiversity in long-term polychlorinated biphenyl-contaminated soils. Microorganisms 9:2051. https://doi.org/10.3390/microorganisms9102051
doi: 10.3390/microorganisms9102051
pubmed: 34683371
pmcid: 8541467
Cébron A, Beguiristain T, Bongoua-Devisme J et al (2015) Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. Environ Sci Pollut Res 22:13724–13738. https://doi.org/10.1007/s11356-015-4117-3
doi: 10.1007/s11356-015-4117-3
Schnürer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43:1256–1261. https://doi.org/10.1128/aem.43.6.1256-1261.1982
doi: 10.1128/aem.43.6.1256-1261.1982
pubmed: 16346026
pmcid: 244223
Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522. https://doi.org/10.1073/pnas.1000080107
doi: 10.1073/pnas.1000080107
pubmed: 20534432
Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE 4:e7401. https://doi.org/10.1371/journal.pone.0007401
doi: 10.1371/journal.pone.0007401
pubmed: 19816594
pmcid: 2754607
Russo DA, Couto N, Beckerman AP, Pandhal J (2016) A metaproteomic analysis of the response of a freshwater microbial community under nutrient enrichment. Front Microbiol 7:1172. https://doi.org/10.3389/fmicb.2016.01172
doi: 10.3389/fmicb.2016.01172
pubmed: 27536273
pmcid: 4971099
Hugoni M, Escalas A, Bernard C et al (2018) Spatiotemporal variations in microbial diversity across the three domains of life in a tropical thalassohaline lake (Dziani Dzaha, Mayotte Island). Mol Ecol 27:4775–4786. https://doi.org/10.1111/mec.14901
doi: 10.1111/mec.14901
pubmed: 30346079
Rognes T, Flouri T, Nichols B et al (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584
doi: 10.7717/peerj.2584
pubmed: 27781170
pmcid: 5075697
Mahé F, Rognes T, Quince C et al (2014) Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2:e593
doi: 10.7717/peerj.593
pubmed: 25276506
pmcid: 4178461
Bokulich NA, Subramanian S, Faith JJ et al (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59. https://doi.org/10.1038/nmeth.2276
doi: 10.1038/nmeth.2276
pubmed: 23202435
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07
doi: 10.1128/AEM.00062-07
pubmed: 17586664
pmcid: 1950982
Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421
doi: 10.1186/1471-2105-10-421
pubmed: 20003500
pmcid: 2803857
Glöckner FO, Yilmaz P, Quast C et al (2017) 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol 261:169–176. https://doi.org/10.1016/j.jbiotec.2017.06.1198
doi: 10.1016/j.jbiotec.2017.06.1198
pubmed: 28648396
Escudié F, Auer L, Bernard M, et al (2017) FROGS: Find, Rapidly, OTUs with Galaxy Solution. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx791
Gower JC (1971) A General Coefficient of Similarity and Some of Its Properties. Biometrics, pp 857–871
Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
doi: 10.1111/j.1654-1103.2003.tb02228.x
R Development Core Team (2010) a language and environment for statistical computing: reference index. R Foundation for Statistical Computing, Vienna
Wickham H (2010) A Layered Grammar of Graphics. J Comput Graph Stat 19:3–28. https://doi.org/10.1198/jcgs.2009.07098
doi: 10.1198/jcgs.2009.07098
Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 4:9
Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160. https://doi.org/10.1111/j.1574-6941.2007.00375.x
doi: 10.1111/j.1574-6941.2007.00375.x
pubmed: 17892477
Mackova M, Prouzova P, Stursa P et al (2009) Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environ Sci Pollut Res 16:817–829. https://doi.org/10.1007/s11356-009-0240-3
doi: 10.1007/s11356-009-0240-3
Hu J, Qian M, Zhang Q et al (2015) Sphingobium fuliginis HC3: a novel and robust isolated biphenyl- and polychlorinated biphenyls-degrading bacterium without dead-end intermediates accumulation. PLoS ONE 10:e0122740. https://doi.org/10.1371/journal.pone.0122740
doi: 10.1371/journal.pone.0122740
pubmed: 25875180
pmcid: 4395236
Muzikář M, Křesinová Z, Svobodová K et al (2011) Biodegradation of chlorobenzoic acids by ligninolytic fungi. J Hazard Mater 196:386–394. https://doi.org/10.1016/j.jhazmat.2011.09.041
doi: 10.1016/j.jhazmat.2011.09.041
pubmed: 21963171
Ruiz-aguilar GML, Fern JM, Rodrıguez-vazquez R, Poggi-varaldo H (2001) Degradation by white-rot fungi of high concentrations of PCB
Vyas BRM, Šašek V, Matucha M, Bubner M (1994) Degradation of 3,3′,4,4′-tetrachlorobiphenyl by selected white rot fungi. Chemosphere 28:1127–1134. https://doi.org/10.1016/0045-6535(94)90331-X
doi: 10.1016/0045-6535(94)90331-X
Timonen S, Bomberg M (2009) Archaea in dry soil environments. Phytochem Rev 8:505–518. https://doi.org/10.1007/s11101-009-9137-5
doi: 10.1007/s11101-009-9137-5
Khalid F, Hashmi MZ, Jamil N, et al (2021) Microbial and enzymatic degradation of PCBs from e-waste-contaminated sites: a review. Environ Sci Pollut Res 28:. https://doi.org/10.1007/s11356-020-11996-2
Matturro B, Mascolo G, Rossetti S (2020) Microbiome changes and oxidative capability of an anaerobic PCB dechlorinating enrichment culture after oxygen exposure. New Biotechnol 56:96–102. https://doi.org/10.1016/j.nbt.2019.12.004
doi: 10.1016/j.nbt.2019.12.004
Romero MC, Reinoso EH, Moreno Kiernan A, Urrutia MI (2006) Chlorinated biphenyl degradation by wild yeasts pre-cultured in biphasic systems. Electron J Biotechnol 9:0-0. https://doi.org/10.4067/S0717-34582006000300013
Périgon S, Massier M, Germain J et al (2019) Metabolic adaptation of fungal strains in response to contamination by polychlorinated biphenyls. Environ Sci Pollut Res 26:14943–14950. https://doi.org/10.1007/s11356-019-04701-5
doi: 10.1007/s11356-019-04701-5
Cervantes-González E, Guevara-García MA, García-Mena J, Ovando-Medina VM (2019) Microbial diversity assessment of polychlorinated biphenyl–contaminated soils and the biostimulation and bioaugmentation processes. Environ Monit Assess 191:118. https://doi.org/10.1007/s10661-019-7227-4
doi: 10.1007/s10661-019-7227-4
pubmed: 30706145
Jayamani I, Cupples AM (2015) Stable isotope probing and high-throughput sequencing implicate Xanthomonadaceae and Rhodocyclaceae in ethylbenzene degradation. Environ Eng Sci 32:240–249. https://doi.org/10.1089/ees.2014.0456
doi: 10.1089/ees.2014.0456
Nogales B, Moore ERB, Abraham W-R, Timmis KN (1999) Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil. Environ Microbiol 1:199–212. https://doi.org/10.1046/j.1462-2920.1999.00024.x
doi: 10.1046/j.1462-2920.1999.00024.x
pubmed: 11207739
McGenity TJ (2019) Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Springer International Publishing, Cham
doi: 10.1007/978-3-030-14796-9
Gonzalez E, Pitre FE, Pagé AP et al (2018) Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination. Microbiome 6:53. https://doi.org/10.1186/s40168-018-0432-5
doi: 10.1186/s40168-018-0432-5
pubmed: 29562928
pmcid: 5863371
Kong M, St-Arnaud M, Hijri M, Laliberté É (2016) Biodiversity of arbuscular mycorrhizal fungi from extreme petroleum hydrocarbon contaminated site. 65
Budzinski JW, Foster BC, Vandenhoek S, Arnason JT (2000) An in vitro evaluation of human cytochrome P450 3A4 inhibition by selected commercial herbal extracts and tinctures. Phytomedicine 7:273–282. https://doi.org/10.1016/S0944-7113(00)80044-6
doi: 10.1016/S0944-7113(00)80044-6
pubmed: 10969720
Barhoumi B, LeMenach K, Dévier M-H et al (2014) Distribution and ecological risk of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in surface sediments from the Bizerte lagoon, Tunisia. Environ Sci Pollut Res 21:6290–6302. https://doi.org/10.1007/s11356-013-1709-7
doi: 10.1007/s11356-013-1709-7