Membrane reshaping by protein condensates.
Condensates
Endocytosis
Membrane curvature
Phase separation
Journal
Biochimica et biophysica acta. Biomembranes
ISSN: 1879-2642
Titre abrégé: Biochim Biophys Acta Biomembr
Pays: Netherlands
ID NLM: 101731713
Informations de publication
Date de publication:
03 2023
03 2023
Historique:
received:
20
10
2022
revised:
05
01
2023
accepted:
06
01
2023
pmc-release:
01
03
2024
pubmed:
16
1
2023
medline:
7
2
2023
entrez:
15
1
2023
Statut:
ppublish
Résumé
Proteins can organize into dynamic, functionally important assemblies on fluid membrane surfaces. Phase separation has emerged as an important mechanism for forming such protein assemblies on the membrane during cell signaling, endocytosis, and cytoskeleton regulation. Protein-protein phase separation thus adds novel fluid mosaics to the classical Singer and Nicolson model. Protein condensates formed in this process can modulate membrane morphologies. This is evident from recent reports of protein condensate-driven membrane reshaping in processes such as endocytosis, autophagosome formation, and protein storage vacuole morphogenesis in plants. Lateral phase separation (on the membrane surface) of peripheral curvature coupling proteins can modulate such membrane morphological transitions. Additionally, three-dimensional protein phase separation can result in droplets that through adhesion can affect membrane shape changes. How do these condensate-driven curvature generation mechanisms contrast with the classically recognized scaffolding and amphipathic helix insertion activities of specific membrane remodeling proteins? A salient feature of these condensate-driven membrane activities is that they depend upon both macroscopic features (such as interfacial energies of the condensate, membrane, and cytosol) as well as microscopic, molecular-level interactions (such as protein-lipid binding). This review highlights the current understanding of the mechanisms underlying curvature generation by protein condensates in various biological pathways.
Identifiants
pubmed: 36642341
pii: S0005-2736(23)00003-2
doi: 10.1016/j.bbamem.2023.184121
pmc: PMC10208392
mid: NIHMS1877139
pii:
doi:
Substances chimiques
Membrane Proteins
0
Types de publication
Journal Article
Review
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
184121Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM097552
Pays : United States
Informations de copyright
Copyright © 2023 Elsevier B.V. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
Nature. 2022 Sep;609(7926):255-264
pubmed: 36071192
EMBO J. 2013 Oct 16;32(20):2735-50
pubmed: 24076653
Emerg Top Life Sci. 2020 Dec 11;4(3):247-261
pubmed: 33048111
Science. 2010 Jun 4;328(5983):1281-4
pubmed: 20448150
Biophys J. 2021 Apr 6;120(7):1257-1265
pubmed: 33080222
Nature. 2012 Mar 07;483(7389):336-40
pubmed: 22398450
J Am Chem Soc. 2022 Aug 3;144(30):13451-13455
pubmed: 35878395
Nature. 2021 Mar;591(7848):142-146
pubmed: 33473217
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11):
pubmed: 33688043
Sci Adv. 2023 Apr 28;9(17):eadf6205
pubmed: 37126554
Sci Adv. 2022 Oct 14;8(41):eabp8677
pubmed: 36240267
Nature. 2015 Jan 22;517(7535):493-6
pubmed: 25517096
Science. 2016 Apr 29;352(6285):595-9
pubmed: 27056844
Nature. 2015 Jan 22;517(7535):460-5
pubmed: 25517094
Trends Cell Biol. 2018 Mar;28(3):188-200
pubmed: 29241687
Nat Rev Mol Cell Biol. 2017 May;18(5):285-298
pubmed: 28225081
Nat Commun. 2015 Jul 24;6:7875
pubmed: 26204806
Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4731-6
pubmed: 21383120
Nat Cell Biol. 2021 Apr;23(4):366-376
pubmed: 33820972
J Am Chem Soc. 2008 Sep 17;130(37):12252-3
pubmed: 18712871
Nat Rev Drug Discov. 2022 Nov;21(11):841-862
pubmed: 35974095
Nat Commun. 2022 Aug 26;13(1):5017
pubmed: 36028485
EMBO J. 2006 Jun 21;25(12):2898-910
pubmed: 16763559
Mol Cell. 2019 Oct 17;76(2):295-305
pubmed: 31604601
Biochem J. 2020 Jun 26;477(12):2327-2345
pubmed: 32589750
Proc Natl Acad Sci U S A. 2021 Dec 14;118(50):
pubmed: 34887356
Science. 2017 Sep 22;357(6357):
pubmed: 28935776
Nat Commun. 2013;4:2728
pubmed: 24201430
Cell. 2019 Jan 24;176(3):419-434
pubmed: 30682370
J Biol Chem. 2013 Aug 30;288(35):25119-25128
pubmed: 23861397
Curr Biol. 2009 Jan 27;19(2):95-107
pubmed: 19150238
Trends Cell Biol. 2006 Oct;16(10):493-8
pubmed: 16949824
Proc Natl Acad Sci U S A. 2021 Jun 22;118(25):
pubmed: 34135122
Int J Mol Sci. 2020 Aug 17;21(16):
pubmed: 32824618
Elife. 2017 Sep 21;6:
pubmed: 28933693
Elife. 2014 Oct 16;3:
pubmed: 25321392
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40):
pubmed: 34599097
Science. 1972 Feb 18;175(4023):720-31
pubmed: 4333397
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36):
pubmed: 34475202
J Phys Chem B. 2012 Feb 16;116(6):1819-23
pubmed: 22242924
Phys Rev Lett. 2009 Dec 4;103(23):238103
pubmed: 20366179
Cell. 2018 Aug 23;174(5):1172-1187.e16
pubmed: 30078712
Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):5920-5
pubmed: 15788532
Appl Sci (Basel). 2021 Feb;11(3):
pubmed: 34327010
Annu Rev Biophys. 2020 May 6;49:107-133
pubmed: 32004090