Neurovascular hypoxia after mild traumatic brain injury in juvenile mice correlates with heart-brain dysfunctions in adulthood.
4D ultrasound
diastolic dysfunction
heart-brain axis
photoacoustic imaging
traumatic brain injury
Journal
Acta physiologica (Oxford, England)
ISSN: 1748-1716
Titre abrégé: Acta Physiol (Oxf)
Pays: England
ID NLM: 101262545
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
revised:
20
12
2022
received:
23
08
2022
accepted:
02
01
2023
medline:
18
5
2023
pubmed:
11
1
2023
entrez:
10
1
2023
Statut:
ppublish
Résumé
Retrospective studies suggest that mild traumatic brain injury (mTBI) in pediatric patients may lead to an increased risk of cardiac events. However, the exact functional and temporal dynamics and the associations between heart and brain pathophysiological trajectories are not understood. A single impact to the left somatosensory cortical area of the intact skull was performed on juvenile mice (17 days postnatal). Cerebral 3D photoacoustic imaging was used to measure the oxygen saturation (sO We report a rapid and transient decrease in cerebrovascular sO Experimental juvenile mTBI induces time-dependent cardiac dysfunction that corresponds to the initial neurovascular sO
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13933Informations de copyright
© 2023 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
Références
Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080-1097. doi:10.3171/2017.10.JNS17352
Ouellet MC, Beaulieu-Bonneau S, Morin CM. Traumatic brain injury. Handb Sleep Disord Med Cond. 2022;1(1):221-252. doi:10.1016/B978-0-12-813014-8.00010-X
van Vliet EA, Marchi N. Neurovascular unit dysfunction as a mechanism of seizures and epilepsy during aging. Epilepsia. 2022;63(6):1297-1313. doi:10.1111/EPI.17210
McDonald SJ, Sharkey JM, Sun M, et al. Beyond the brain: peripheral interactions after traumatic brain injury. J Neurotrauma. 2020;37(5):770-781. doi:10.1089/neu.2019.6885
Hasanin A, Kamal A, Amin S, et al. Incidence and outcome of cardiac injury in patients with severe head trauma. Scand J Trauma Resusc Emerg Med. 2016;24:58. doi:10.1186/s13049-016-0246-z
Izzy S, Chen PM, Tahir Z, et al. Association of traumatic brain injury with the risk of developing chronic cardiovascular, endocrine, neurological, and psychiatric disorders. JAMA Netw Open. 2022;5(4):e229478. doi:10.1001/jamanetworkopen.2022.9478
Delage C, Taib T, Mamma C, Lerouet D, Besson VC. Traumatic brain injury: an age-dependent view of post-traumatic neuroinflammation and its treatment. Pharmaceutics. 2021;13(10):1624. doi:10.3390/pharmaceutics13101624
Owens TS, Calverley TA, Stacey BS, et al. Concussion history in rugby union players is associated with depressed cerebrovascular reactivity and cognition. Scand J Med Sci Sports. 2021;31(12):2291-2299. doi:10.1111/SMS.14046
Lumba-Brown A, Yeates KO, Sarmiento K, et al. Diagnosis and management of mild traumatic brain injury in children: a systematic review. JAMA Pediatr. 2018;172(11):e182847. doi:10.1001/jamapediatrics.2018.2847
Krishnamoorthy V, Prathep S, Sharma D, Fujita Y, Armstead W, Vavilala MS. Cardiac dysfunction following brain death after severe pediatric traumatic brain injury: a preliminary study of 32 children. Int J Crit Illn Inj Sci. 2015;5(2):103-107. doi:10.4103/2229-5151.158409
Ichkova A, Rodriguez-Grande B, Zub E, et al. Early cerebrovascular and long-term neurological modifications ensue following juvenile mild traumatic brain injury in male mice. Neurobiol Dis. 2020;141:104952. doi:10.1016/j.nbd.2020.104952
Xia J, Yao J, Wang LV. Photoacoustic tomography: principles and advances. Electromagn Waves. 2014;147:1-22. doi:10.2528/pier14032303
Saeed M, Anh Van T, Krug R, Hetts SW, Wilson MW. Cardiac MR imaging: current status and future direction. Cardiovasc Diagn Ther. 2014;5(4):290-310. doi:10.3978/j.issn.2223-3652.2015.06.07
David H, Ughetto A, Gaudard P, et al. Experimental myocardial infarction elicits time-dependent patterns of vascular hypoxia in peripheral organs and in the brain. Front Cardiovasc Med. 2021;7:615507. doi:10.3389/fcvm.2020.615507
Sicard P, Jouitteau T, Andrade-Martins T, et al. Right coronary artery ligation in mice: a novel method to investigate right ventricular dysfunction and biventricular interaction. Am J Physiol Hear Circ Physiol. 2019;316(3):H684-H692. doi:10.1152/ajpheart.00573.2018
Damen FW, Berman AG, Soepriatna AH, et al. High-frequency 4-dimensional ultrasound (4DUS): a reliable method for assessing murine cardiac function. Tomography. 2017;3(4):180-187. doi:10.18383/j.tom.2017.00016
Zipes DP, Libby P, Bonow RO, Mann DL, Tomaselli GF, Braunwald E. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine. Vol. 2. 11th ed. Elsevier; 2018.
Bailes JE, Dashnaw ML, Petraglia AL, Turner RC. Cumulative effects of repetitive mild traumatic brain injury. Prog Neurol Surg. 2014;28:50-61. doi:10.1159/000358765
Gregory MTS. Cardiovascular complications of brain injury. In: Langton JA, ed. Continuing Education in Aesthesia, Critical Care, and Pain (Vol. 12, 2nd ed.). Oxford University Press; 2011:67-71. doi:10.1093/bjaceaccp/mkr058
Schnelle M, Catibog N, Zhang M, et al. Echocardiographic evaluation of diastolic function in mouse models of heart disease. J Mol Cell Cardiol. 2018;114:20-28. doi:10.1016/j.yjmcc.2017.10.006
Cuisinier A, Maufrais C, Payen JF, Nottin S, Walther G, Bouzat P. Myocardial function at the early phase of traumatic brain injury: a prospective controlled study. Scand J Trauma Resusc Emerg Med. 2016;24(1). doi:10.1186/S13049-016-0323-3
Murphy AM, Kogler H, Georgakopoulos D, et al. Transgenic mouse model of stunned myocardium. Science. 2000;287(5452):488-491. doi:10.1126/science.287.5452.488
Tenhunen O, Rysa J, Ilves M, Soini Y, Ruskoaho H, Leskinen H. Identification of cell cycle regulatory and inflammatory genes as predominant targets of p38 mitogen-activated protein kinase in the heart. Circ Res. 2006;99(5):485-493. doi:10.1161/01.RES.0000238387.85144.92
Krishnamoorthy V, Chaikittisilpa N, Lee J, et al. Speckle tracking analysis of left ventricular systolic function following traumatic brain injury: a pilot prospective observational cohort study. J Neurosurg Anesthesiol. 2020;32(2):156-161. doi:10.1097/ANA.0000000000000578
Sturgill MG, Kelly M, Notterman DA. Pharmacology of the cardiovascular system. Pediatr Crit Care. 2011;29:277-305. doi:10.1016/B978-0-323-07307-3.10025-4
Abouezzeddine OF, Kemp BJ, Borlaug BA, et al. Myocardial energetics in heart failure with preserved ejection fraction. Circ Hear Fail. 2019;12(10):e006240. doi:10.1161/CIRCHEARTFAILURE.119.006240
van Empel VP, Mariani J, Borlaug BA, Kaye DM. Impaired myocardial oxygen availability contributes to abnormal exercise hemodynamics in heart failure with preserved ejection fraction. J Am Hear Assoc. 2014;3(6):e001293. doi:10.1161/JAHA.114.001293
Bigler ED, Abildskov TJ, Goodrich-Hunsaker NJ, et al. Structural neuroimaging findings in mild traumatic brain injury. Sports Med Arthrosc. 2016;24(3):e42. doi:10.1097/JSA.0000000000000119
Bigler ED. Systems biology, neuroimaging, neuropsychology, neuroconnectivity and traumatic brain injury. Front Syst Neurosci. 2016;10:55. doi:10.3389/fnsys.2016.00055
Amyot F, Arciniegas DB, Brazaitis MP, et al. A review of the effectiveness of neuroimaging modalities for the detection of traumatic brain injury. J Neurotrauma. 2015;32(22):1693-1721. doi:10.1089/neu.2013.3306
Kurland D, Hong C, Aarabi B, Gerzanich V, Simard JM. Hemorrhagic progression of a contusion after traumatic brain injury: a review. J Neurotrauma. 2012;29(1):19-31. doi:10.1089/neu.2011.2122
Demené C, Robin J, Dizeux A, et al. Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients. Nat Biomed Eng. 2021;5(3):219-228. doi:10.1038/s41551-021-00697-x
Barud M, Dabrowski W, Siwicka-Gieroba D, Robba C, Bielacz M, Badenes R. Usefulness of cerebral oximetry in TBI by NIRS. J Clin Med. 2021;10(13). doi:10.3390/jcm10132938
Jollife IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans R Soc A Math Phys Eng Sci. 2016;374(2065):20150202. doi:10.1098/RSTA.2015.0202
Ljubicic ML, Madsen A, Juul A, Almstrup K, Johannsen TH. The application of principal component analysis on clinical and biochemical parameters exemplified in children with congenital adrenal hyperplasia. Front Endocrinol (Lausanne). 2021;12:1057. doi:10.3389/FENDO.2021.652888/BIBTEX
Andkhoie M, Meyer D, Szafron M. Factors underlying treatment decision-making for localized prostate cancer in the U.S. and Canada: a scoping review using principal component analysis. Can Urol Assoc J. 2019;13(7):E220. doi:10.5489/CUAJ.5538
Danna-Dos-Santos A, Mohapatra S, Santos M, Degani AM. Long-term effects of mild traumatic brain injuries to oculomotor tracking performances and reaction times to simple environmental stimuli. Sci Rep. 2018;8(1):4583. doi:10.1038/s41598-018-22825-5
Dean PJ, Sterr A. Long-term effects of mild traumatic brain injury on cognitive performance. Front Hum Neurosci. 2013;7:30. doi:10.3389/fnhum.2013.00030
Rodriguez-Grande B, Obenaus A, Ichkova A, et al. Gliovascular changes precede white matter damage and long-term disorders in juvenile mild closed head injury. Glia. 2018;66(8):1663-1677. doi:10.1002/glia.23336
Clément T, Lee JB, Ichkova A, et al. Juvenile mild traumatic brain injury elicits distinct spatiotemporal astrocyte responses. Glia. 2020;68(3):528-542.
El-Menyar A, Sathian B, Wahlen BM, Al-Thani H. Serum cardiac troponins as prognostic markers in patients with traumatic and non-traumatic brain injuries: a meta-analysis. Am J Emerg Med. 2019;37(1):133-142. doi:10.1016/j.ajem.2018.10.002
Nguembu S, Meloni M, Endalle G, et al. Paroxysmal sympathetic hyperactivity in moderate-to-severe traumatic brain injury and the role of Beta-blockers: a scoping review. Emerg Med Int. 2021;2021:5589239. doi:10.1155/2021/5589239
Bretzin AC, Covassin T, Fox ME, et al. Sex differences in the clinical incidence of concussions, missed school days, and time loss in high school student-athletes: part 1. Am J Sports Med. 2018;46(9):2263-2269. doi:10.1177/0363546518778251
Zhang YP, Cai J, Shields LBE, Liu N, Xu XM, Shields CB. Traumatic brain injury using mouse models. Transl Stroke Res. 2014;5(4):454-471. doi:10.1007/S12975-014-0327-0
du Sert NP, Ahluwalia A, Alam S, et al. Reporting animal research: explanation and elaboration for the arrive guidelines 2.0. PLoS Biol. 2020;18(7). doi:10.1371/JOURNAL.PBIO.3000411
Lindsey ML, Kassiri Z, Virag JAI, de Castro Bras LE, Scherrer-Crosbie M. Guidelines for measuring cardiac physiology in mice. Am J Physiol Hear Circ Physiol. 2018;314(4):H733-H752. doi:10.1152/ajpheart.00339.2017
Salami CO, Jackson K, Jose C, et al. Stress-induced mouse model of the cardiac manifestations of Friedreich's ataxia corrected by AAV-mediated. Gene Ther. 2020;31(15-16):819-827. doi:10.1089/hum.2019.363
Damen FW, Salvas JP, Pereyra AS, Ellis JM, Goergen CJ. Improving characterization of hypertrophy-induced murine cardiac dysfunction using four-dimensional ultrasound-derived strain mapping. Am J Physiol Hear Circ Physiol. 2021;321(1):H197-H207. doi:10.1152/ajpheart.00133.2021
Dann MM, Clark SQ, Trzaskalski NA, et al. Quantification of murine myocardial infarct size using 2-D and 4-D high-frequency ultrasound. Am J Physiol Hear Circ Physiol. 2022;322(3):H359-H372. doi:10.1152/ajpheart.00476.2021
Moreira Souza AC, Grabe-Guimarães A, Cruz J d S, et al. Mechanisms of artemether toxicity on single cardiomyocytes and protective effect of nanoencapsulation. Br J Pharmacol. 2020;177(19):4448-4463. doi:10.1111/BPH.15186
Nguyen U, Squaglia N, Boge A, Fung PA. The simple Western™: a gel-free, blot-free, hands-free Western blotting reinvention. Nat Methods. 2011;8(11):v-vi. doi:10.1038/nmeth.f.353
Jensen BL, Persson PB. Good publication practice in physiology 2021. Acta Physiol. 2022;234(1):e13741. doi:10.1111/APHA.13741