CRISPR-Cas9 recognition of enzymatically synthesized base-modified nucleic acids.
Journal
Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011
Informations de publication
Date de publication:
28 02 2023
28 02 2023
Historique:
accepted:
17
11
2022
revised:
09
11
2022
received:
13
10
2022
pubmed:
8
1
2023
medline:
4
3
2023
entrez:
7
1
2023
Statut:
ppublish
Résumé
An enzymatic method has been successfully established enabling the generation of partially base-modified RNA (previously named RZA) constructs, in which all G residues were replaced by isomorphic fluorescent thienoguanosine (thG) analogs, as well as fully modified RZA featuring thG, 5-bromocytosine, 7-deazaadenine and 5-chlorouracil. The transcriptional efficiency of emissive fully modified RZA was found to benefit from the use of various T7 RNA polymerase variants. Moreover, dthG could be incorporated into PCR products by Taq DNA polymerase together with the other three base-modified nucleotides. Notably, the obtained RNA products containing thG as well as thG together with 5-bromocytosine could function as effectively as natural sgRNAs in an in vitro CRISPR-Cas9 cleavage assay. N1-Methylpseudouridine was also demonstrated to be a faithful non-canonical substitute of uridine to direct Cas9 nuclease cleavage when incorporated in sgRNA. The Cas9 inactivation by 7-deazapurines indicated the importance of the 7-nitrogen atom of purines in both sgRNA and PAM site for achieving efficient Cas9 cleavage. Additional aspects of this study are discussed in relation to the significance of sgRNA-protein and PAM--protein interactions that were not highlighted by the Cas9-sgRNA-DNA complex crystal structure. These findings could expand the impact and therapeutic value of CRISPR-Cas9 and other RNA-based technologies. With the advent of CRISPR-Cas9 gene editing, we now have to hand a simple two-component system amendable to silencing and knock-in editing effectively any gene. Yet we must not forget that the implications of immunotoxicity along with the poor stability and specificity of canonical nucleic acids hold enormous challenges for in vivo applications, especially in gene therapy. Our study endorses the feasibility of the enzymatic approach to incorporate nucleobase modifications into the CRISPR-Cas9 system unveiling the tolerance of Cas9 to N1-methylpseudouridine (m1Ψ)- and emissive thienoguanosine (thG)-modified sgRNA as well as thus far uncharted structural requirements for ensuring proper PAM recognition.
Autres résumés
Type: plain-language-summary
(eng)
With the advent of CRISPR-Cas9 gene editing, we now have to hand a simple two-component system amendable to silencing and knock-in editing effectively any gene. Yet we must not forget that the implications of immunotoxicity along with the poor stability and specificity of canonical nucleic acids hold enormous challenges for in vivo applications, especially in gene therapy. Our study endorses the feasibility of the enzymatic approach to incorporate nucleobase modifications into the CRISPR-Cas9 system unveiling the tolerance of Cas9 to N1-methylpseudouridine (m1Ψ)- and emissive thienoguanosine (thG)-modified sgRNA as well as thus far uncharted structural requirements for ensuring proper PAM recognition.
Identifiants
pubmed: 36611237
pii: 6967240
doi: 10.1093/nar/gkac1147
pmc: PMC9976875
doi:
Substances chimiques
DNA
9007-49-2
Nucleic Acids
0
RNA
63231-63-0
thienoguanosine
0
Guanosine
12133JR80S
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1501-1511Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.
Références
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):E7110-7
pubmed: 26589814
J Am Chem Soc. 2015 Mar 11;137(9):3185-8
pubmed: 25714036
Nat Nanotechnol. 2021 Jun;16(6):630-643
pubmed: 34059811
ACS Chem Biol. 2013 Sep 20;8(9):2017-23
pubmed: 23865809
Methods Enzymol. 1989;180:51-62
pubmed: 2482430
Nucleic Acids Res. 1987 Nov 11;15(21):8783-98
pubmed: 3684574
Nat Rev Drug Discov. 2018 Apr;17(4):261-279
pubmed: 29326426
Nat Biotechnol. 2015 Sep;33(9):985-989
pubmed: 26121415
Science. 2019 Feb 22;363(6429):884-887
pubmed: 30792304
Nat Biotechnol. 2004 Sep;22(9):1155-60
pubmed: 15300257
Science. 2013 Feb 15;339(6121):819-23
pubmed: 23287718
Signal Transduct Target Ther. 2022 May 21;7(1):166
pubmed: 35597779
ACS Synth Biol. 2013 Sep 20;2(9):529-36
pubmed: 23957635
Nature. 2014 Sep 25;513(7519):569-73
pubmed: 25079318
Chem Rev. 2010 May 12;110(5):2579-619
pubmed: 20205430
Biochemistry. 2018 May 29;57(21):3027-3031
pubmed: 29746102
J Am Chem Soc. 2011 Sep 28;133(38):14912-5
pubmed: 21866967
Chem Commun (Camb). 2014 Feb 14;50(13):1573-5
pubmed: 24382561
Nat Biotechnol. 2014 Apr;32(4):347-55
pubmed: 24584096
Methods Mol Biol. 2021;2162:37-48
pubmed: 32926376
Nucleic Acids Res. 2015 Sep 3;43(15):7480-8
pubmed: 26209133
Protein Eng Des Sel. 2013 Nov;26(11):725-34
pubmed: 24006372
Chemistry. 2022 Jun 21;28(35):e202200994
pubmed: 35390188
Chemistry. 2017 Jul 18;23(40):9560-9576
pubmed: 28513881
Cell Death Dis. 2022 Jul 23;13(7):644
pubmed: 35871216
Trends Biotechnol. 2019 Aug;37(8):870-881
pubmed: 30846198
Nucleic Acids Res. 1998 Oct 1;26(19):4309-14
pubmed: 9742229
Nat Rev Drug Discov. 2021 Aug;20(8):629-651
pubmed: 34145432
ACS Cent Sci. 2021 May 26;7(5):748-756
pubmed: 34075344
Nat Biotechnol. 2014 Jul;32(7):670-6
pubmed: 24752079
J Phys Chem B. 2012 Jul 5;116(26):7618-26
pubmed: 22671305
Angew Chem Int Ed Engl. 2013 Dec 23;52(52):14026-30
pubmed: 24288262
Angew Chem Int Ed Engl. 2017 Jan 24;56(5):1303-1307
pubmed: 28000329
Nucleic Acids Res. 2011 May;39(9):3988-4006
pubmed: 21245046
Phys Chem Chem Phys. 2020 Apr 14;22(14):7381-7391
pubmed: 32211689
Angew Chem Int Ed Engl. 2016 Jun 20;55(26):7515-9
pubmed: 27159019
Cell. 2014 Feb 27;156(5):935-49
pubmed: 24529477
Nucleic Acids Res. 2020 Apr 6;48(6):e35
pubmed: 32090264
Nucleic Acids Res. 2002 Dec 15;30(24):e138
pubmed: 12490729
Nat Biotechnol. 2017 Dec;35(12):1179-1187
pubmed: 29131148
J Am Chem Soc. 2014 Oct 29;136(43):15176-84
pubmed: 25255464
Angew Chem Int Ed Engl. 2021 Feb 19;60(8):4175-4182
pubmed: 33142013
Biochem Biophys Res Commun. 2005 Aug 5;333(3):664-70
pubmed: 15975554
Nucleic Acids Res. 2018 Jan 25;46(2):792-803
pubmed: 29216382
Mol Cell. 2016 Mar 17;61(6):895-902
pubmed: 26990992
Science. 2012 Aug 17;337(6096):816-21
pubmed: 22745249
Nat Biotechnol. 2013 Sep;31(9):822-6
pubmed: 23792628
Org Biomol Chem. 2018 Aug 15;16(32):5800-5807
pubmed: 30063056
Org Biomol Chem. 2016 Dec 20;15(1):168-176
pubmed: 27918055
Cell Syst. 2017 Jan 25;4(1):21-29
pubmed: 28125791
J Am Chem Soc. 2020 Oct 7;142(40):16999-17014
pubmed: 32915558