Ancient multiplicity in cyclic nucleotide-gated (CNG) cation channel repertoire was reduced in the ancestor of Olfactores before re-expansion by whole genome duplications in vertebrates.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2022
2022
Historique:
received:
29
09
2022
accepted:
09
12
2022
entrez:
30
12
2022
pubmed:
31
12
2022
medline:
4
1
2023
Statut:
epublish
Résumé
Cyclic nucleotide-gated (CNG) cation channels are important heterotetrameric proteins in the retina, with different subunit composition in cone and rod photoreceptor cells: three CNGA3 and one CNGB3 in cones and three CNGA1 and one CNGB1 in rods. CNGA and CNGB subunits form separate subfamilies. We have analyzed the evolution of the CNG gene family in metazoans, with special focus on vertebrates by using sequence-based phylogeny and conservation of chromosomal synteny to deduce paralogons resulting from the early vertebrate whole genome duplications (WGDs). Our analyses show, unexpectedly, that the CNGA subfamily had four sister subfamilies in the ancestor of bilaterians and cnidarians that we named CNGC, CNGD, CNGE and CNGF. Of these, CNGC, CNGE and CNGF were lost in the ancestor of Olfactores while CNGD was lost in the vertebrate ancestor. The remaining CNGA and CNGB genes were expanded by a local duplication of CNGA and the subsequent chromosome duplications in the basal vertebrate WGD events. Upon some losses, this resulted in the gnathostome ancestor having three members in the visual CNGA subfamily (CNGA1-3), a single CNGA4 gene, and two members in the CNGB subfamily (CNGB1 and CNGB3). The nature of chromosomal rearrangements in the vertebrate CNGA paralogon was resolved by including the genomes of a non-teleost actinopterygian and an elasmobranch. After the teleost-specific WGD, additional duplicates were generated and retained for CNGA1, CNGA2, CNGA3 and CNGB1. Furthermore, teleosts retain a local duplicate of CNGB3. The retention of duplicated CNG genes is explained by their subfunctionalisation and photoreceptor-specific expression. In conclusion, this study provides evidence for four previously unknown CNG subfamilies in metazoans and further evidence that the early vertebrate WGD events were instrumental in the evolution of the vertebrate visual and central nervous systems.
Identifiants
pubmed: 36584110
doi: 10.1371/journal.pone.0279548
pii: PONE-D-22-27051
pmc: PMC9803222
doi:
Substances chimiques
Cyclic Nucleotide-Gated Cation Channels
0
Banques de données
figshare
['10.6084/m9.figshare.c.6170824.v1']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0279548Informations de copyright
Copyright: © 2022 Lagman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Curr Opin Ophthalmol. 2015 Jul;26(5):333-40
pubmed: 26196097
Vis Neurosci. 2006 Jan-Feb;23(1):99-113
pubmed: 16597354
Nat Commun. 2021 Jul 23;12(1):4489
pubmed: 34301952
Nature. 2015 Aug 27;524(7566):462-5
pubmed: 26258298
BMC Evol Biol. 2016 Jun 13;16(1):124
pubmed: 27296292
Open Biol. 2015 Aug;5(8):
pubmed: 26246494
J Mol Biol. 1997 Apr 25;268(1):78-94
pubmed: 9149143
BMC Biol. 2012 Mar 05;10:17
pubmed: 22390726
Bioinformatics. 2012 Dec 1;28(23):3150-2
pubmed: 23060610
Bioinformatics. 2006 Jul 1;22(13):1658-9
pubmed: 16731699
Genome Biol Evol. 2021 Apr 5;13(4):
pubmed: 33751101
BMC Evol Biol. 2013 Nov 02;13:238
pubmed: 24180662
BMC Bioinformatics. 2011 Apr 28;12:124
pubmed: 21526987
Curr Biol. 2021 Dec 6;31(23):5274-5285.e6
pubmed: 34587474
Nat Commun. 2011 Aug 30;2:457
pubmed: 21878911
Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2867-80
pubmed: 19720650
Dev Biol. 2017 Nov 1;431(1):77-92
pubmed: 28347645
Mol Biol Evol. 2018 May 1;35(5):1047-1062
pubmed: 29373712
Nature. 2007 Jun 7;447(7145):714-9
pubmed: 17554307
Proc Biol Sci. 2010 Jul 7;277(1690):1963-9
pubmed: 20219739
Nat Ecol Evol. 2018 Jul;2(7):1176-1188
pubmed: 29942020
Nat Genet. 2016 Apr;48(4):427-37
pubmed: 26950095
J Physiol. 2022 Nov;600(21):4585-4601
pubmed: 35412676
Mol Syst Biol. 2011 Oct 11;7:539
pubmed: 21988835
Genome Res. 2007 Sep;17(9):1254-65
pubmed: 17652425
Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10882-6
pubmed: 1438293
Neuron. 1995 Sep;15(3):627-36
pubmed: 7546742
Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5932-6
pubmed: 1385866
Pflugers Arch. 2014 Jul;466(7):1241-57
pubmed: 24142069
Prog Retin Eye Res. 2013 Sep;36:52-119
pubmed: 23792002
Nature. 1993 Apr 22;362(6422):764-7
pubmed: 7682292
Nucleic Acids Res. 2018 Jul 2;46(W1):W537-W544
pubmed: 29790989
BMC Evol Biol. 2012 Nov 29;12:231
pubmed: 23194088
Cell. 2021 Jun 24;184(13):3573-3587.e29
pubmed: 34062119
Neuron. 2004 May 13;42(3):411-21
pubmed: 15134638
Nature. 2016 Apr 18;533(7602):200-5
pubmed: 27088604
PLoS One. 2010 May 06;5(5):e10512
pubmed: 20463905
Curr Protoc Bioinformatics. 2020 Mar;69(1):e96
pubmed: 32162851
Bioinformatics. 2003 Oct;19 Suppl 2:ii215-25
pubmed: 14534192
PLoS One. 2015 Mar 25;10(3):e0121330
pubmed: 25806532
Dev Biol. 2020 Mar 15;459(2):100-108
pubmed: 31782996
Vision Res. 2020 Jan;166:43-51
pubmed: 31855667
Nucleic Acids Res. 2021 Jan 8;49(D1):D884-D891
pubmed: 33137190
Genetics. 2011 Aug;188(4):799-808
pubmed: 21828280
Annu Rev Cell Dev Biol. 2021 Oct 6;37:441-468
pubmed: 34351785
Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296
pubmed: 33885785
Genomics. 2004 May;83(5):852-72
pubmed: 15081115
Prog Retin Eye Res. 2020 May;76:100823
pubmed: 31790748
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7855-60
pubmed: 24821777
Nucleic Acids Res. 2013 Jan;41(Database issue):D48-55
pubmed: 23203987
Mol Biol Evol. 2017 Jul 1;34(7):1812-1819
pubmed: 28387841
Nature. 2019 Jul;571(7765):349-354
pubmed: 31292549
Adv Exp Med Biol. 2012;723:769-75
pubmed: 22183405
J Exp Biol. 2005 Apr;208(Pt 7):1337-45
pubmed: 15781894
PLoS One. 2017 Mar 21;12(3):e0174250
pubmed: 28323858
Nature. 2004 Oct 21;431(7011):946-57
pubmed: 15496914
Eur J Neurosci. 2011 Feb;33(4):658-67
pubmed: 21299656
Bioinformatics. 2010 Jul 1;26(13):1669-70
pubmed: 20472542
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15487-92
pubmed: 18832151
Mol Biol Evol. 2018 Feb 1;35(2):518-522
pubmed: 29077904
G3 (Bethesda). 2019 May 7;9(5):1283-1294
pubmed: 30833292
Cell. 2018 May 31;173(6):1520-1534.e20
pubmed: 29856957
Sci Rep. 2021 Aug 30;11(1):17340
pubmed: 34462505
Genome Biol. 2018 Oct 17;19(1):166
pubmed: 30333059
Science. 2001 Dec 7;294(5549):2172-5
pubmed: 11739959
Genomics. 2012 Oct;100(4):203-11
pubmed: 22814267
Nat Methods. 2017 Jun;14(6):587-589
pubmed: 28481363
Hum Mol Genet. 2000 Sep 1;9(14):2107-16
pubmed: 10958649
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W309-12
pubmed: 15215400
Mol Biol Evol. 2016 Aug;33(8):2064-87
pubmed: 27189541
EMBO J. 1994 Nov 1;13(21):5040-50
pubmed: 7957070
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Cell Rep. 2012 Aug 30;2(2):294-307
pubmed: 22884275
Nat Genet. 2000 Jul;25(3):289-93
pubmed: 10888875
Hum Mutat. 2019 Aug;40(8):1145-1155
pubmed: 31058429