MDM4: What do we know about the association between its polymorphisms and cancer?
HDMX
Haplotype
MDMX
SNP
Tumor
Journal
Medical oncology (Northwood, London, England)
ISSN: 1559-131X
Titre abrégé: Med Oncol
Pays: United States
ID NLM: 9435512
Informations de publication
Date de publication:
24 Dec 2022
24 Dec 2022
Historique:
received:
09
09
2022
accepted:
13
12
2022
entrez:
24
12
2022
pubmed:
25
12
2022
medline:
28
12
2022
Statut:
epublish
Résumé
MDM4 is an important p53-negative regulator, consequently, it is involved in cell proliferation, DNA repair, and apoptosis regulation. MDM4 overexpression and amplification are described to lead to cancer formation, metastasis, and poor disease prognosis. Several MDM4 SNPs are in non-coding regions, and some affect the MDM4 regulation by disrupting the micro RNA binding site in 3'UTR (untranslated region). Here, we gathered several association studies with different MDM4 SNPs and populations to understand the relationship between its SNPs and solid tumor risk. Many studies failed to replicate their results regarding different populations, cancer types, and risk genotypes, leading to conflicting conclusions. We suggested that distinct haplotype patterns in different populations might affect the association between MDM4 SNPs and cancer risk. Thus, we propose to investigate some linkage SNPs in specific haplotypes to provide informative MDM4 markers for association studies with cancer.
Identifiants
pubmed: 36566308
doi: 10.1007/s12032-022-01929-z
pii: 10.1007/s12032-022-01929-z
doi:
Substances chimiques
Cell Cycle Proteins
0
MDM4 protein, human
0
Nuclear Proteins
0
Proto-Oncogene Proteins
0
Tumor Suppressor Protein p53
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
61Subventions
Organisme : Pronex-FA/CNPq
ID : 116/2018
Organisme : CNPq
ID : 406187/2016-9
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Shvarts A, Bazuine M, Dekker P, Ramos YFM, Steegenga WT, Merckx G, van Ham RCA, vander HouvenOordt W, vander Eb A, Jochemsen AG. Isolation and identification of the human homolog of a new p53-binding protein. Mdmx Genom. 1997;43(1):34–42. https://doi.org/10.1006/geno.1997.4775 .
doi: 10.1006/geno.1997.4775
Shvarts A, Steegenga W, Riteco N, van Laar T, Dekker P, Bazuine M, van Ham R, vander HouvenOordt W, vander Eb A, Jochemsen A. MDMX a novel p53-binding protein with some functional properties of MDM2. EMBO J. 1996. https://doi.org/10.1002/j.1460-2075.1996.tb00919.x .
doi: 10.1002/j.1460-2075.1996.tb00919.x
Sharp DA, Kratowicz SA, Sank MJ, George DL. Stabilization of the MDM2 oncoprotein by Interaction with the structurally related MDMX protein. J Biol Chem. 1999;274:38189–96. https://doi.org/10.1074/jbc.274.53.38189 .
doi: 10.1074/jbc.274.53.38189
Tan BX, Liew HP, Chua JS, Ghadessy FJ, Tan YS, Lane DP, Coffill CR. Anatomy of Mdm2 and Mdm4 in evolution. J Mol Cell Biol. 2017;9:3–15. https://doi.org/10.1093/jmcb/mjx002 .
doi: 10.1093/jmcb/mjx002
Picksley SM, Lane DP. What the papers say: the p53-mdm2 autoregulatory feedback loop: a paradigm for the regulation of growth control by p53? BioEssays. 1993;15:689–90. https://doi.org/10.1002/bies.950151008 .
doi: 10.1002/bies.950151008
Toledo F, Krummel KA, Lee CJ, Liu CW, Rodewald LW, Tang M, Wahl GM. A mouse p53 mutant lacking the proline-rich domain rescues Mdm4 deficiency and provides insight into the Mdm2-Mdm4-p53 regulatory network. Cancer Cell. 2006;9:273–85. https://doi.org/10.1016/j.ccr.2006.03.014 .
doi: 10.1016/j.ccr.2006.03.014
Yu DH, Xu ZY, Mo S, Yuan L, Cheng XD, Qin JJ. Targeting MDMX for cancer therapy: rationale, strategies, and challenges. Front Oncol. 2020;10:1389. https://doi.org/10.3389/fonc.2020.01389 .
doi: 10.3389/fonc.2020.01389
Shadfan M, Lopez-Pajares V, Yuan Z-M. MDM2 and MDMX: alone and together in regulation of p53. Transl Cancer Res. 2012;1:88–9.
Francoz S, Froment P, Bogaerts S, de Clercq S, Maetens M, Doumont G, Bellefroid E, Marine J-C. Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc Natl Acad Sci. 2006;103:3232–7. https://doi.org/10.1073/pnas.0508476103 .
doi: 10.1073/pnas.0508476103
Okamoto K, Taya Y, Nakagama H. Mdmx enhances p53 ubiquitination by altering the substrate preference of the Mdm2 ubiquitin ligase. FEBS Lett. 2009;583:2710–4. https://doi.org/10.1016/j.febslet.2009.07.021 .
doi: 10.1016/j.febslet.2009.07.021
Wang X, Jiang X. Mdm2 and MdmX partner to regulate p53. FEBS Lett. 2012;586:1390–6. https://doi.org/10.1016/j.febslet.2012.02.049 .
doi: 10.1016/j.febslet.2012.02.049
Malbert-Colas L, Ponnuswamy A, Olivares-Illana V, Tournillon AS, Naski N, Fåhraeus R. HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol Cell. 2014;54:500–11. https://doi.org/10.1016/j.molcel.2014.02.035 .
doi: 10.1016/j.molcel.2014.02.035
Mancini F, Moretti F. Mitochondrial MDM4 (MDMX): an unpredicted role in the p53-mediated intrinsic apoptotic pathway. Cell Cycle. 2009;8:3854–9. https://doi.org/10.4161/cc.8.23.10089 .
doi: 10.4161/cc.8.23.10089
Klein AM, Biderman L, Tong D, Alaghebandan B, Plumber SA, Mueller HS, van Vlimmeren A, Katz C, Prives C, Designed CP, Performed CK. MDM2, MDMX, and p73 regulate cell-cycle progression in the absence of wild-type p53. Proc Natl Acad Sci. 2021;18:2102420118. https://doi.org/10.1073/pnas.2102420118 .
doi: 10.1073/pnas.2102420118
Jin Y, Zeng SX, Sun X-X, Lee H, Blattner C, Xiao Z, Lu H. MDMX promotes proteasomal turnover of p21 at G 1 and early S phases independently of, but in cooperation with, MDM2. Mol Cell Biol. 2008;28:1218–29. https://doi.org/10.1128/MCB.01198-07 .
doi: 10.1128/MCB.01198-07
Wu J, Lu G, Wang X. MDM4 alternative splicing and implication in MDM4 targeted cancer therapies. Am J Cancer Res. 2021;11:5864–80.
David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer pathways and programs unhinged. Genes Dev. 2010;24:2343–64. https://doi.org/10.1101/gad.1973010 .
doi: 10.1101/gad.1973010
Bezzi M, Teo SX, Muller J, Mok WC, Sahu SK, Vardy LA, Bonday ZQ, Guccione E. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev. 2013;27:1903–16. https://doi.org/10.1101/gad.219899.113 .
doi: 10.1101/gad.219899.113
Rallapalli R, Strachan G, Cho B, Mercer WE, Hall DJ. A Novel MDMX transcript expressed in a variety of transformed cell lines encodes a truncated protein with potent p53 repressive activity. J Biol Chem. 1999;274(12):8299–308. https://doi.org/10.1074/jbc.274.12.8299 .
doi: 10.1074/jbc.274.12.8299
Rallapalli R, Strachan G, Tuan RS, Hall DJ. Identification of a domain within MDMX-S that is responsible for its high affinity interaction with p53 and high-level expression in mammalian cells. J Cell Biochem. 2003;89:563–75. https://doi.org/10.1002/jcb.10535 .
doi: 10.1002/jcb.10535
Bartel F, Schulz J, Böhnke A, Blümke K, Kappler M, Bache M, Schmidt H, Würl P, Taubert H, Hauptmann S. Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis. Int J Cancer. 2005;117:469–75. https://doi.org/10.1002/ijc.21206 .
doi: 10.1002/ijc.21206
Liu L, Fan L, Fang C, Zou ZJ, Yang S, Zhang LN, Li JY, Xu W. S-MDM4 mRNA overexpression indicates a poor prognosis and marks a potential therapeutic target in chronic lymphocytic leukemia. Cancer Sci. 2012;103:2056–63. https://doi.org/10.1111/cas.12008 .
doi: 10.1111/cas.12008
Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DHP, Koh CM, Rambow F, Fiers M, Rogiers A, Radaelli E, Al-Haddawi M, Tan SY, et al. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Investig. 2016;126:68–84. https://doi.org/10.1172/JCI82534 .
doi: 10.1172/JCI82534
Bardot B, Bouarich-Bourimi R, Leemput J, Lejour V, Hamon A, Plancke L, Jochemsen AG, Simeonova I, Fang M, Toledo F. Mice engineered for an obligatory Mdm4 exon skipping express higher levels of the Mdm4-S isoform but exhibit increased p53 activity. Oncogene. 2015;34:2943–8. https://doi.org/10.1038/onc.2014.230 .
doi: 10.1038/onc.2014.230
Lenos K, Grawenda AM, Lodder K, Kuijjer ML, Teunisse AFAS, Repapi E, Grochola LF, Bartel F, Hogendoorn PCW, Wuerl P, Taubert H, Cleton-Jansen A-M, Bond GL, et al. Alternate splicing of the p53 inhibitor HDMX offers a superior prognostic biomarker than p53 mutation in human cancer. Can Res. 2012;72:4074–84. https://doi.org/10.1158/0008-5472.CAN-12-0215 .
doi: 10.1158/0008-5472.CAN-12-0215
Giglio S, Mancini F, Gentiletti F, Sparaco G, Felicioni L, Barassi F, Martella C, Prodosmo A, Iacovelli S, Buttitta F, Farsetti A, Soddu S, Marchetti A, et al. Identification of an aberrantly spliced form of HDMX in human tumors: a new mechanism for HDM2 stabilization. Can Res. 2005;65:9687–94. https://doi.org/10.1158/0008-5472.CAN-05-0450 .
doi: 10.1158/0008-5472.CAN-05-0450
Prodosmo A, Giglio S, Moretti S, Mancini F, Barbi F, Avenia N, di Conza G, Schünemann HJ, Pistola L, Ludovini V, Sacchi A, Pontecorvi A, Puxeddu E, et al. Analysis of human MDM4 variants in papillary thyroid carcinomas reveals new potential markers of cancer properties. J Mol Med. 2008;86:585–96. https://doi.org/10.1007/s00109-008-0322-6 .
doi: 10.1007/s00109-008-0322-6
Alatawi A, Kho S, Markey MP. MDM4 isoform expression in melanoma supports an oncogenic role for MDM4-A. J Skin Cancer. 2021. https://doi.org/10.1155/2021/3087579 .
doi: 10.1155/2021/3087579
de Graaf P, Little NA, Ramos YFM, Meulmeester E, Letteboer SJF, Jochemsen AG. Hdmx protein stability is regulated by the ubiquitin ligase activity of Mdm2. J Biol Chem. 2003;278:38315–24. https://doi.org/10.1074/jbc.M213034200 .
doi: 10.1074/jbc.M213034200
Chandler DS, Singh RK, Caldwell LC, Bitler JL, Lozano G. Genotoxic stress induces coordinately regulated alternative splicing of the p53 modulators MDM2 and MDM4. Can Res. 2006;66:9502–8. https://doi.org/10.1158/0008-5472.CAN-05-4271 .
doi: 10.1158/0008-5472.CAN-05-4271
Jacob AG, O’Brien D, Singh RK, Comiskey DF, Littleton RM, Mohammad F, Gladman JT, Widmann MC, Jeyaraj SC, Bolinger C, Anderson JR, Barkauskas DA, Boris-Lawrie K, et al. Stress-induced isoforms of MDM2 and MDM4 correlate with high-grade disease and an altered splicing network in pediatric rhabdomyosarcoma. Neoplasia. 2013. https://doi.org/10.1593/neo.13286 .
doi: 10.1593/neo.13286
Riemenschneider MJ, Büschges R, Wolter M, Reifenberger J, Boström J, Kraus JA, Schlegel U, Reifenberger G. Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Can Res. 1999;59:6091–6.
Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R, de Graaf P, Francoz S, Gasparini P, Gobbi A, Helin K, Pelicci PG, Jochemsen AG, et al. Amplification of MDMX (or MDM4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol. 2004;24:5835–43. https://doi.org/10.1128/MCB.24.13.5835-5843.2004 .
doi: 10.1128/MCB.24.13.5835-5843.2004
Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, Johnson D, Wilson M, Rodriguez-Galindo C, et al. Inactivation of the p53 pathway in retinoblastoma. Nature. 2006;444:61–6. https://doi.org/10.1038/nature05194 .
doi: 10.1038/nature05194
Sun T, Lee GSM, Oh WK, Pomerantz M, Yang M, Xie W, Freedman ML, Kantoff PW. Single-nucleotide polymorphisms in p53 pathway and aggressiveness of prostate cancer in a caucasian population. Clin Cancer Res. 2010;16:5244–51. https://doi.org/10.1158/1078-0432.CCR-10-1261 .
doi: 10.1158/1078-0432.CCR-10-1261
Yu H, Wang LE, Liu Z, Wei S, Li G, Sturgis EM, Wei Q. Polymorphisms of MDM4 and risk of squamous cell carcinoma of the head and neck. Pharmacogenet Genom. 2011;21:388–96. https://doi.org/10.1097/FPC.0b013e32834632e4 .
doi: 10.1097/FPC.0b013e32834632e4
Swetzig WM, Wang J, Das GM. Estrogen receptor alpha ERα/ESR1 mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.7533 .
doi: 10.18632/oncotarget.7533
Wang MY, Jia M, He J, Zhou F, Qiu LX, Sun MH, Yang YJ, Wang JC, Jin L, Wang YN, Wei QY. MDM4 genetic variants and risk of gastric cancer in an eastern chinese population. Oncotarget. 2017. https://doi.org/10.18632/oncotarget.14666 .
doi: 10.18632/oncotarget.14666
Zhang X, Yamamoto Y, Wang X, Sato M, Imanishi M, Sugaya A, Hirose M, Endo S, Moriwaki T, Yamato K, Hyodo I. MDM4 as a Prognostic factor for patients with gastric cancer with low expression of p53. Anticancer Res. 2021;41:1475–83. https://doi.org/10.21873/anticanres.14906 .
doi: 10.21873/anticanres.14906
Li L, Tan Y, Chen X, Xu Z, Yang S, Ren F, Guo H, Wang X, Chen Y, Li G, Wang H. MDM4 overexpressed in acute myeloid leukemia patients with complex karyotype and wild-type TP53. PLoS ONE. 2014;9:e113088. https://doi.org/10.1371/journal.pone.0113088 .
doi: 10.1371/journal.pone.0113088
Xiong S, Pant V, Suh YA, van Pelt CS, Wang Y, Valentin-Vega YA, Post SM, Lozano G. Spontaneous tumorigenesis in mice overexpressing the p53-negative regulator Mdm4. Can Res. 2010;70:7148–54. https://doi.org/10.1158/0008-5472.CAN-10-1457 .
doi: 10.1158/0008-5472.CAN-10-1457
Gao C, Xiao G, Piersigilli A, Gou J, Ogunwobi O, Bargonetti J. Context-dependent roles of MDMX (MDM4) and MDM2 in breast cancer proliferation and circulating tumor cells. Breast Cancer Res. 2019;21:5. https://doi.org/10.1186/s13058-018-1094-8 .
doi: 10.1186/s13058-018-1094-8
Yu Q, Li Y, Mu K, Li Z, Meng Q, Wu X, Wang Y, Li L. Amplification of Mdmx and overexpression of MDM2 contribute to mammary carcinogenesis by substituting for p53 mutations. Diagn Pathol. 2014;9:71. https://doi.org/10.1186/1746-1596-9-71 .
doi: 10.1186/1746-1596-9-71
Hoffman Y, Pilpel Y, Oren M. MicroRNAs and Alu elements in the p53-Mdm2-Mdm4 regulatory network. J Mol Cell Biol. 2014;3:192–7. https://doi.org/10.1093/jmcb/mju020 .
doi: 10.1093/jmcb/mju020
Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10:126–39. https://doi.org/10.1038/nrm2632 .
doi: 10.1038/nrm2632
Yang Y, Gao W, Ding X, Xu W, Liu D, Su B, Sun Y. Variations within 3’-UTR of MDM4 gene contribute to clinical outcomes of advanced non-small cell lung cancer patients following platinum-based chemotherapy. Oncotarget. 2017;8:16313–24. https://doi.org/10.18632/oncotarget.10771 .
doi: 10.18632/oncotarget.10771
Gao F, Xiong X, Pan W, Yang X, Zhou C, Yuan Q, Zhou L, Yang M. A regulatory MDM4 genetic variant locating in the binding sequence of multiple MicroRNAs contributes to susceptibility of small cell lung cancer. PLoS ONE. 2015;10:e0135647. https://doi.org/10.1371/journal.pone.0135647 .
doi: 10.1371/journal.pone.0135647
Wynendaele J, Böhnke A, Leucci E, Nielsen SJ, Lambertz I, Hammer S, Sbrzesny N, Kubitza D, Wolf A, Gradhand E, Balschun K, Braicu I, Sehouli J, et al. An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Can Res. 2010;70:9641–9. https://doi.org/10.1158/0008-5472.CAN-10-0527 .
doi: 10.1158/0008-5472.CAN-10-0527
Stegeman S, Moya L, Selth LA, Spurdle AB, Clements JA, Batra J. A genetic variant of MDM4 influences regulation by multiple microRNAs in prostate cancer. Endocr Relat Cancer. 2015;22:265–76. https://doi.org/10.1530/ERC-15-0013 .
doi: 10.1530/ERC-15-0013
Yu D, Xu Z, Cheng X, Qin J. The role of miRNAs in MDMX-p53 interplay. J Evid Based Med. 2021;14:152–60. https://doi.org/10.1111/jebm.12428 .
doi: 10.1111/jebm.12428
Zhao J, Dong X, Tao S-J, Liu X-L, Li Z, Liu J-M, Chen Y. MDM4 is targeted by miR-449b-5p to promote the proliferation of endometrial carcinoma. Eur Rev Med Pharmacol Sci. 2020;24:11528–35. https://doi.org/10.26355/eurrev_202011_23794 .
doi: 10.26355/eurrev_202011_23794
Singh Atwal G, Kirchhoff T, Bond EE, Montagna M, Menin C, Bertorelle R, Chiara Scaini M, Bartel F, Bö Hnke FA, Pempe C, Gradhand E, Hauptmann S, Offit K, et al. Altered tumor formation and evolutionary selection of genetic variants in the human MDM4 oncogene. Proc Natl Acad Sci. 2009;106:10236–41. https://doi.org/10.1073/pnas.0901298106 .
doi: 10.1073/pnas.0901298106
Kulkarni DA, Vazquez A, Haffty BG, Bandera Ev, Hu W, Sun YY, Toppmeyer DL, Levine AJ, Hirshfield KM. A polymorphic variant in human MDM4 associates with accelerated age of onset of estrogen receptor negative breast cancer. Carcinogenesis. 2009;30:1910–5. https://doi.org/10.1093/carcin/bgp224 .
doi: 10.1093/carcin/bgp224
Eeles RA, Olamaal AA, Benlloch S, Saunders EJ, Leongamornlert DA, Tymrakiewicz M, Ghoussaini M, Luccarini C, Dennis J, Jugurnauth-Little S, Dadaev T, Neal DE, Hamdy FC, et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet. 2013;45:385–91. https://doi.org/10.1038/ng.2560 .
doi: 10.1038/ng.2560
Deng N, Zhou H, Fan H, Yuan Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget. 2017;8:110635–49. https://doi.org/10.18632/oncotarget.22372 .
doi: 10.18632/oncotarget.22372
Gansmo LB, Romundstad P, Birkeland E, Hveem K, Vatten L, Knappskog S, Lønning PE. MDM4 SNP34091 (rs4245739) and its effect on breast-, colon-, lung-, and prostate cancer risk. Cancer Med. 2015;4:1901–7. https://doi.org/10.1002/cam4.555 .
doi: 10.1002/cam4.555
Gansmo LB, Bjørnslett M, Halle MK, Salvesen HB, Dørum A, Birkeland E, Hveem K, Romundstad P, Vatten L, Lønning PE, Knappskog S. The MDM4 SNP34091 (rs4245739) C-allele is associated with increased risk of ovarian—but not endometrial cancer. Tumor Biology. 2016;37:10697–702. https://doi.org/10.1007/s13277-016-4940-2 .
doi: 10.1007/s13277-016-4940-2
Zhou L, Zhang X, Li Z, Zhou C, Li M, Tang X, Lu C, Li H, Yuan Q, Yang M. Association of a genetic variation in a miR-191 binding site in MDM4 with risk of esophageal squamous cell carcinoma. PLoS ONE. 2013;8:e64331. https://doi.org/10.1371/journal.pone.0064331 .
doi: 10.1371/journal.pone.0064331
Liu J, Tang X, Li M, Lu C, Shi J, Zhou L, Yuan Q, Yang M. Functional MDM4 rs4245739 genetic variant, alone and in combination with P53 Arg72Pro polymorphism, contributes to breast cancer susceptibility. Breast Cancer Res Treat. 2013;140:151–7. https://doi.org/10.1007/s10549-013-2615-x .
doi: 10.1007/s10549-013-2615-x
Jin X, Zhao W, Zheng M, Zhou P, Niu T. The role of MDM4 SNP34091 A>C polymorphism in cancer: a meta-analysis on 19,328 patients and 51,058 controls. Int J Biol Markers. 2017;32:e62–7. https://doi.org/10.5301/jbm.5000228 .
doi: 10.5301/jbm.5000228
Bauer M, Kantelhardt EJ, Stiewe T, Nist A, Mernberger M, Politt K, Hanf V, Lantzsch T, Uleer C, Peschel S, John J, Buchmann J, Weigert E, et al. Specific allelic variants of SNPs in the MDM2 and MDMX genes are associated with earlier tumor onset and progression in Caucasian breast cancer patients. Oncotarget. 2019;10:1975–92. https://doi.org/10.18632/oncotarget.26768 .
doi: 10.18632/oncotarget.26768
Zhang Y, Sturgis EM, Wei P, Liu H, Wang Z, Ma Y, Liu C, Gu KJ, Wei Q, Li G. A genetic variant within MDM4 3′UTR miRNA binding site is associated with HPV16-positive tumors and survival of oropharyngeal cancer. Mol Carcinog. 2019;58:2276–85. https://doi.org/10.1002/mc.23116 .
doi: 10.1002/mc.23116
Zhao DM, Diao YE, Xu Q. Association of mdm4 gene rs4245739 polymorphism with the risk and clinical characteristics of colorectal cancer in a chinese han population. Pharmacogen Personal Med. 2020;13:673–8. https://doi.org/10.2147/PGPM.S260209 .
doi: 10.2147/PGPM.S260209
Bartnykaitė A, Savukaitytė A, Ugenskienė R, Daukšaitė M, Korobeinikova E, Gudaitienė J, Juozaitytė E. Associations of mdm2 and mdm4 polymorphisms with early-stage breast cancer. J Clin Med. 2021;10:1–11. https://doi.org/10.3390/jcm10040866 .
doi: 10.3390/jcm10040866
Chen J, Li X, Liu R, Xie Y, Liu Z, Xiong H, Li Y. The correlation of mouse double minute 4 (MDM4) polymorphisms (rs4245739, rs1563828, rs11801299, rs10900598, and rs1380576) with cancer susceptibility: a meta-analysis. Med Sci Monit. 2022;28:e935671. https://doi.org/10.12659/MSM.935671 .
doi: 10.12659/MSM.935671
Wang Y, Yang Z, Chang X, Li J, Han Z. Five MDM4 gene polymorphisms on cancer risk: an updated systematic review and meta-analysis. Int J Biol Markers. 2021;36:17246008211033874. https://doi.org/10.1177/17246008211033874 .
doi: 10.1177/17246008211033874
Kotarac N, Dobrijevic Z, Matijasevic S, Savic-Pavicevic D, Brajuskovic G. Association of KLK3, VAMP8 and MDM4 genetic variants within microRNA binding sites with prostate cancer evidence from serbian population. Pathol Oncol Res. 2020;26:2409–23. https://doi.org/10.1007/s12253-020-00839-7 .
doi: 10.1007/s12253-020-00839-7
Garcia-Closas M, Couch FJ, Lindstrom S, Michailidou K, Schmidt MK, Brook MN, Orr N, Rhie SK, Riboli E, Feigelson HS, le Marchand L, Buring JE, Eccles D, et al. Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet. 2013;45:392–8. https://doi.org/10.1038/ng.2561 .
doi: 10.1038/ng.2561
Purrington KS, Slager S, Eccles D, Yannoukakos D, Fasching PA, Miron P, Carpenter J, Chang-claude J, Martin NG, Montgomery GW, Kristensen V, Anton-Culver H, Goodfellow P, et al. Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis. 2014;35:1012–9. https://doi.org/10.1093/carcin/bgt404 .
doi: 10.1093/carcin/bgt404
Yu F, Jiang Z, Song A. Association of rs11801299 and rs1380576 polymorphisms at MDM4 with risk, clinicopathological features and prognosis in patients with retinoblastoma. Cancer Epidemiol. 2019;58:153–9. https://doi.org/10.1016/j.canep.2018.12.010 .
doi: 10.1016/j.canep.2018.12.010
Lu Z, Sturgis EM, Zhu L, Zhang H, Tao Y, Wei P, Wei Q, Li G. Mouse double minute 4 variants modify susceptibility to risk of recurrence in patients with squamous cell carcinoma of the oropharynx. Mol Carcinog. 2018;57:361–9. https://doi.org/10.1002/mc.22760 .
doi: 10.1002/mc.22760
Fan H, Liu D, Qiu X, Qiao F, Wu Q, Su X, Zhang F, Song Y, Zhao Z, Xie W. A functional polymorphism in the DNA methyltransferase-3A promoter modifies the susceptibility in gastric cancer but not in esophageal carcinoma. BMC Med. 2010;8:12. https://doi.org/10.1186/1741-7015-8-12 .
doi: 10.1186/1741-7015-8-12
Shao N, Li J, Xu B, Wang Y, Lu X, Feng N. Role of the functional variant (−652T>G) in the XRCC4 promoter in prostate cancer. Mol Biol Rep. 2014;41:7463–70. https://doi.org/10.1007/s11033-014-3636-1 .
doi: 10.1007/s11033-014-3636-1
Rintisch C, Heinig M, Bauerfeind A, Schafer S, Mieth C, Patone G, Hummel O, Chen W, Cook S, Cuppen E, Colomé-Tatché M, Johannes F, Jansen RC, et al. Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Res. 2014;24:942–53. https://doi.org/10.1101/gr.169029.113 .
doi: 10.1101/gr.169029.113
Reincke S, Govbakh L, Wilhelm B, Jin H, Bogdanova N, Bremer M, Karstens JH, Dörk T. Mutation analysis of the MDM4 gene in German breast cancer patients. BMC Cancer. 2008;8:942–53. https://doi.org/10.1186/1471-2407-8-52 .
doi: 10.1186/1471-2407-8-52
Oscanoa J, Sivapalan L, Gadaleta E, Dayem Ullah AZ, Lemoine NR, Chelala C. SNPnexus: a web server for functional annotation of human genome sequence variation. Nucleic Acids Res. 2020;48:W185–92. https://doi.org/10.1093/nar/gkaa420 .
doi: 10.1093/nar/gkaa420
Vohra M, Sharma AR, Prabhu BN, Rai PS. SNPs in sites for DNA methylation, transcription factor binding, and miRNA targets leading to allele-specific gene expression and contributing to complex disease risk: a systematic review. Public Health Genom. 2020;23:155–70. https://doi.org/10.1159/000510253 .
doi: 10.1159/000510253
Shyamala N, Kongettira CL, Puranam K, Kupsal K, Kummari R, Padala C, Hanumanth SR. In silico identification of single nucleotide variations at CpG sites regulating CpG island existence and size. Sci Rep. 2022;12:3574. https://doi.org/10.1038/s41598-022-05198-8 .
doi: 10.1038/s41598-022-05198-8
de Oliveira Reis AH, de Carvalho INSR, de Sousa Damasceno PB, Ferman SE, Lucena E, Lopez-Camelo JS, Seuánez HN, Vargas FR. Influence of MDM2 and MDM4 on development and survival in hereditary retinoblastoma. Pediatric Blood Cancer. 2012;59:39–43. https://doi.org/10.1002/pbc.24014 .
doi: 10.1002/pbc.24014
Spinello Z, Fregnani A, Quotti Tubi L, Trentin L, Piazza F, Manni S. Targeting protein kinases in blood cancer: focusing on CK1α and CK2. Int J Mol Sci. 2021;22:3716. https://doi.org/10.3390/ijms22073716 .
doi: 10.3390/ijms22073716
Chen L, Li C, Pan Y, Chen J. Regulation of p53-MDMX interaction by casein kinase 1 alpha. Mol Cell Biol. 2005;25:6509–20. https://doi.org/10.1128/MCB.25.15.6509-6520.2005 .
doi: 10.1128/MCB.25.15.6509-6520.2005
Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS, Tastsoglou S, Kanellos I, Papadimitriou D, Kavakiotis I, Maniou S, Skoufos G, Vergoulis T, Dalamagas T, Hatzigeorgiou AG. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res. 2018;46:D239–45. https://doi.org/10.1093/nar/gkx1141 .
doi: 10.1093/nar/gkx1141
Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452–7. https://doi.org/10.1093/nar/gks539 .
doi: 10.1093/nar/gks539
Melin BS, Barnholtz-Sloan JS, Wrensch MR, Johansen C, Il’yasova D, Kinnersley B, Ostrom QT, Labreche K, Chen Y, Armstrong G, Liu Y, Eckel-Passow JE, Decker PA, et al. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet. 2017. https://doi.org/10.1038/ng.3823 .
doi: 10.1038/ng.3823
Sun P, Yan F, Fang W, Zhao J, Chen H, Ma X, Song J. MDM4 contributes to the increased risk of glioma susceptibility in Han Chinese population. Sci Rep. 2018;8:11093. https://doi.org/10.1038/s41598-018-29468-6 .
doi: 10.1038/s41598-018-29468-6
le Morvan V, Litière S, Laroche-Clary A, Ait-Ouferoukh S, Bellott R, Messina C, Cameron D, Bonnefoi H, Robert J. Identification of SNPs associated with response of breast cancer patients to neoadjuvant chemotherapy in the EORTC-10994 randomized phase III trial. Pharmacogen J. 2015;15:63–8. https://doi.org/10.1038/tpj.2014.24 .
doi: 10.1038/tpj.2014.24
Hashemi M, Sanaei S, Hashemi SM, Eskandari E, Bahari G. Association of single nucleotide polymorphisms of the MDM4 gene with the susceptibility to breast cancer in a Southeast Iranian population sample. Clin Breast Cancer. 2018;18:e883–91. https://doi.org/10.1016/j.clbc.2018.01.003 .
doi: 10.1016/j.clbc.2018.01.003
Lesseur C, Ferreiro-Iglesias A, McKay JD, Bossé Y, Johansson M, Gaborieau V, Landi MT, Christiani DC, Caporaso NC, Bojesen SE, Amos CI, Shete S, Liu G, et al. Genome-wide association meta-analysis identifies pleiotropic risk loci for aerodigestive squamous cell cancers. PLoS Genet. 2021;17:e1009254. https://doi.org/10.1371/journal.pgen.1009254 .
doi: 10.1371/journal.pgen.1009254
Jansen R, Hottenga J-J, Nivard MG, Abdellaoui A, Laport B, de Geus EJ, Wright FA, Penninx BWJH, Boomsma DI. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Hum Mol Genet. 2017;26:1444–51. https://doi.org/10.1093/hmg/ddx043 .
doi: 10.1093/hmg/ddx043
Khanlou ZM, Pouladi N, Feizi MH, Pedram N. Lack of associations of the MDM4 rs4245739 polymorphism with risk of thyroid cancer among Iranian-Azeri patients: a case-control study. Asian Pac J Cancer Prev. 2017;18:1133–8. https://doi.org/10.22034/APJCP.2017.18.4.1133 .
doi: 10.22034/APJCP.2017.18.4.1133
Stumbrytė-Kaminskienė A, Gudlevičienė Ž, Dabkevičienė D, Mackevičienė I. Combined effect of HPV and several gene SNPs in laryngeal cancer. Medicina. 2020;56:81. https://doi.org/10.3390/medicina56020081 .
doi: 10.3390/medicina56020081
Wang Z, Sturgis EM, Zhang Y, Huang Z, Zhou Q, Wei Q, Li G. Combined p53-related genetic variants together with HPV infection increase oral cancer risk. Int J Cancer. 2012;131:E251–8. https://doi.org/10.1002/ijc.27335 .
doi: 10.1002/ijc.27335
Stumbryte A, Gudleviciene Z, Kundrotas G, Dabkeviciene D, Kunickaite A, Cicenas S. Individual and combined effect of TP53, MDM2, MDM4, MTHFR, CCR5, and CASP8 gene polymorphisms in lung cancer. Oncotarget. 2018;9:3214–29. https://doi.org/10.18632/oncotarget.22756 .
doi: 10.18632/oncotarget.22756
Pedram N, Pouladi N, Feizi M, Montazeri V, Sakhinia E, Estiar M. Analysis of the association between MDM4 rs4245739 single nucleotide polymorphism and breast cancer susceptibility. Clin Lab. 2016;62:1303–8. https://doi.org/10.7754/Clin.Lab.2016.151128 .
doi: 10.7754/Clin.Lab.2016.151128
Anwar SL, Wulaningsih W, Watkins J. Profile of the breast cancer susceptibility marker rs4245739 identifies a role for miRNAs. Cancer Biol Med. 2017;14:387–95. https://doi.org/10.20892/j.issn.2095-3941.2017.0050 .
doi: 10.20892/j.issn.2095-3941.2017.0050
Zhou R, Li Y, Wang N, Niu C, Huang X, Cao S, Huo X. MDM4 polymorphisms associated with the risk but not the prognosis of esophageal cancer in Cixian high-incidence region from northern China. Asia Pacific J Clin Oncol. 2022;18:e435–41. https://doi.org/10.1111/ajco.13746 .
doi: 10.1111/ajco.13746
Wu GC, Zhang ZT. Genetic association of single nucleotide polymorphisms in P53 pathway with gastric cancer risk in a Chinese Han population. Med Oncol. 2015;32:1–5. https://doi.org/10.1007/s12032-014-0401-1 .
doi: 10.1007/s12032-014-0401-1
Fang S, Krahe R, Lozano G, Han Y, Chen W, Post SM, Zhang B, Wilson CD, Bachinski LL, Strong LC, Amos CI. Effects of MDM2, MDM4and TP53 codon 72 polymorphisms on cancer risk in a cohort study of carriers of TP53 germline mutations. PLoS ONE. 2010;5:e10813. https://doi.org/10.1371/journal.pone.0010813 .
doi: 10.1371/journal.pone.0010813
Yu H, Sturgis EM, Liu Z, Wang LE, Wei Q, Li G. Modifying effect of MDM4 variants on risk of HPV16-associated squamous cell carcinoma of oropharynx. Cancer. 2012;118:1684–92. https://doi.org/10.1002/cncr.26423 .
doi: 10.1002/cncr.26423
Cardon LR, Bell JI. Association study designs for complex diseases. Nat Rev Genet. 2001;2:91–9. https://doi.org/10.1038/35052543 .
doi: 10.1038/35052543
Slatkin M. Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2008;9:477–85. https://doi.org/10.1038/nrg2361 .
doi: 10.1038/nrg2361
Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31:3555–7. https://doi.org/10.1093/bioinformatics/btv402 .
doi: 10.1093/bioinformatics/btv402
Luo Y, Hitz BC, Gabdank I, Hilton JA, Kagda MS, Lam B, Myers Z, Sud P, Jou J, Lin K, Baymuradov UK, Graham K, Litton C, et al. New developments on the encyclopedia of DNA elements (ENCODE) data portal. Nucleic Acids Res. 2020;48:D882–9. https://doi.org/10.1093/nar/gkz1062 .
doi: 10.1093/nar/gkz1062