The Green Leaf Volatile (Z)-3-Hexenyl Acetate Is Differently Emitted by Two Varieties of
acetylated C6 aldehyde
induced plant volatiles
plant-defense response
wounding
Journal
Plants (Basel, Switzerland)
ISSN: 2223-7747
Titre abrégé: Plants (Basel)
Pays: Switzerland
ID NLM: 101596181
Informations de publication
Date de publication:
29 Nov 2022
29 Nov 2022
Historique:
received:
28
10
2022
revised:
19
11
2022
accepted:
26
11
2022
entrez:
11
12
2022
pubmed:
12
12
2022
medline:
12
12
2022
Statut:
epublish
Résumé
While studying aromas produced by the edible flowers of Tulbaghia violacea, we noticed a different production of (Z)-3-Hexenyl acetate (a green-leaf volatile, GLV) by purple (var. ‘Violacea’) and white (var. ‘Alba’) flowers. The white Tulbaghia flowers constantly emits (Z)-3-Hexenyl acetate, which is instead produced in a lower amount by the purple-flowered variety. Thus, we moved to analyze the production of (Z)-3-Hexenyl acetate by whole plants of the two varieties by keeping them confined under a glass bell for 5 h together with a SPME (Solid Phase Micro Extraction) fiber. Results show that six main volatile compounds are emitted by T. violacea plants: (Z)-3-Hexenyl acetate, benzyl alcohol, nonanal, decanal, (Z)-3-Hexenyl-α-methylbutyrate, and one unknown compound. By cutting at half-height of the leaves, the (Z)-3-Hexenyl acetate is emitted in high quantities from both varieties, while the production of (Z)-3-Hexenyl-α-methylbutyrate increases. (Z)-3-Hexenyl acetate is a GLV capable of stimulating plant defenses, attracting herbivores and their natural enemies, and it is also involved in plant-to-plant communication and defense priming. Thus, T. violacea could represent a useful model for the study of GLVs production and a ‘signal’ plant capable of stimulating natural defenses in the neighboring plants.
Identifiants
pubmed: 36501344
pii: plants11233305
doi: 10.3390/plants11233305
pmc: PMC9739665
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
J Chem Ecol. 2011 Jul;37(7):741-50
pubmed: 21671083
Front Plant Sci. 2022 Mar 10;13:860157
pubmed: 35360336
Insects. 2021 Oct 15;12(10):
pubmed: 34680708
Essays Biochem. 2020 Sep 23;64(3):501-512
pubmed: 32602544
Ann Bot. 2003 Sep;92(3):329-37
pubmed: 12871847
J Econ Entomol. 2012 Aug;105(4):1149-56
pubmed: 22928292
Front Plant Sci. 2022 Aug 15;13:942789
pubmed: 36035665
J Agric Food Chem. 2022 Aug 17;70(32):9826-9833
pubmed: 35916419
Annu Rev Plant Biol. 2018 Apr 29;69:363-386
pubmed: 29166128
J Fungi (Basel). 2021 Apr 18;7(4):
pubmed: 33919547
Braz J Biol. 2021 Jul-Sep;81(3):611-620
pubmed: 32935818
New Phytol. 2018 Nov;220(3):666-683
pubmed: 28665020
Nature. 2000 Aug 3;406(6795):512-5
pubmed: 10952311
Free Radic Res. 2015 May;49(5):565-82
pubmed: 25536417
Bull Entomol Res. 2017 Feb;107(1):77-84
pubmed: 27444230
Front Plant Sci. 2020 Oct 15;11:583275
pubmed: 33178248
J Chem Ecol. 1994 Dec;20(12):3039-50
pubmed: 24241975
Phytochemistry. 2002 May;60(1):21-5
pubmed: 11985847
Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1781-5
pubmed: 14749516
Plant Physiol. 2015 Apr;167(4):1671-84
pubmed: 25713338
Insect Mol Biol. 2021 Aug;30(4):390-399
pubmed: 33822423
Plants (Basel). 2016 Jan 08;5(1):
pubmed: 27135225
J Agric Food Chem. 2013 Feb 13;61(6):1335-42
pubmed: 23331069
Front Physiol. 2018 Jul 18;9:769
pubmed: 30072905