Six miRNA expressions in the saliva of smokers and non-smokers with periodontal disease.
gingivitis
miRNA
periodontal therapy
periodontitis
smoking
Journal
Journal of periodontal research
ISSN: 1600-0765
Titre abrégé: J Periodontal Res
Pays: United States
ID NLM: 0055107
Informations de publication
Date de publication:
Feb 2023
Feb 2023
Historique:
revised:
13
10
2022
received:
15
04
2022
accepted:
29
11
2022
pubmed:
11
12
2022
medline:
19
1
2023
entrez:
10
12
2022
Statut:
ppublish
Résumé
It has been stated that microRNA (miRNA) plays an important role in development, homeostasis, and immune functions, and abnormal miRNA expression may cause faster disease progression. The aim of this study was to determine miR-203, miR-142-3p, miR-146a, miR-146b, miR-155, and miR-29b gene expressions in the saliva of smokers and non-smokers with the periodontal disease before and after non-surgical periodontal therapy (NSPT). A total of 90 individuals, 30 with periodontitis, 30 with gingivitis, and 30 periodontally healthy (control group), were included. These three groups were divided into subgroups as smoking and non-smoking individuals, with 15 people in each group. NSPT was applied to patients with periodontitis and gingivitis. Saliva samples and clinical parameters were obtained at baseline and repeated 6 weeks after NSPT. Saliva miR-203, miR-142-3p, miR-146a, miR-146b, and miR-155 gene expressions were significantly upregulated in patients with periodontal disease compared to the control group both in smokers and non-smokers, and also these miRNAs' gene expressions were significantly higher in the periodontitis group than in the gingivitis group at baseline (p < .05). A significant increase in saliva miR-142-3p expression was detected in all groups of smokers compared to non-smokers (p < .05). Although there was a decrease in salivary miRNAs gene expressions with the treatment, it was not statistically significant (p > .05). These results suggest that salivary miR-146a, miR-146b, miR142-3p, miR-155, and miR-203 gene expressions increased with the progression of periodontal disease, but unchanged after periodontal treatment. Moreover, smoking may contribute to an increase in the levels of salivary miR-142-3p in the periodontal health and disease.
Sections du résumé
BACKGROUND
BACKGROUND
It has been stated that microRNA (miRNA) plays an important role in development, homeostasis, and immune functions, and abnormal miRNA expression may cause faster disease progression.
OBJECTIVE
OBJECTIVE
The aim of this study was to determine miR-203, miR-142-3p, miR-146a, miR-146b, miR-155, and miR-29b gene expressions in the saliva of smokers and non-smokers with the periodontal disease before and after non-surgical periodontal therapy (NSPT).
METHODS
METHODS
A total of 90 individuals, 30 with periodontitis, 30 with gingivitis, and 30 periodontally healthy (control group), were included. These three groups were divided into subgroups as smoking and non-smoking individuals, with 15 people in each group. NSPT was applied to patients with periodontitis and gingivitis. Saliva samples and clinical parameters were obtained at baseline and repeated 6 weeks after NSPT.
RESULTS
RESULTS
Saliva miR-203, miR-142-3p, miR-146a, miR-146b, and miR-155 gene expressions were significantly upregulated in patients with periodontal disease compared to the control group both in smokers and non-smokers, and also these miRNAs' gene expressions were significantly higher in the periodontitis group than in the gingivitis group at baseline (p < .05). A significant increase in saliva miR-142-3p expression was detected in all groups of smokers compared to non-smokers (p < .05). Although there was a decrease in salivary miRNAs gene expressions with the treatment, it was not statistically significant (p > .05).
CONCLUSIONS
CONCLUSIONS
These results suggest that salivary miR-146a, miR-146b, miR142-3p, miR-155, and miR-203 gene expressions increased with the progression of periodontal disease, but unchanged after periodontal treatment. Moreover, smoking may contribute to an increase in the levels of salivary miR-142-3p in the periodontal health and disease.
Substances chimiques
MicroRNAs
0
MIRN203 microRNA, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
195-203Subventions
Organisme : The Scientific and Technological Research Council of Turkey
ID : 318S106
Informations de copyright
© 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Références
Slots J. Periodontitis: facts, fallacies and the future. Periodontol 2000 2000. 2017;75(1):7-23. doi:10.1111/prd.12221
Schmalz G, Li S, Burkhardt R, et al. MicroRNAs as salivary markers for periodontal diseases: a new diagnostic approach? Biomed Res Int. 2016;2016:1027525. doi:10.1155/2016/1027525
Luan X, Zhou X, Naqvi A, et al. MicroRNAs and immunity in periodontal health and disease. Int J Oral Sci. 2018;10(3):24. doi:10.1038/s41368-018-0025-y
Sonkoly E, Ståhle M, Pivarcsi A. MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol. 2008;18(2):131-140. doi:10.1016/j.semcancer.2008.01.005
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509-524. doi:10.1038/nrm3838
Dai R, Ahmed SA. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res. 2011;157(4):163-179. doi:10.1016/j.trsl.2011.01.007
Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92-105. doi:10.1101/gr.082701.108
O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10(2):111-122. doi:10.1038/nri2708
Xie YF, Shu R, Jiang SY, Liu DL, Zhang XL. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues. Int J Oral Sci. 2011;3(3):125-134. doi:10.4248/IJOS11046
Kim DH, Saetrom P, Snøve O, Rossi JJ. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A. 2008;105(42):16230-16235. doi:10.1073/pnas.0808830105
Lin X, Lo HC, Wong DTW, Xiao X. Noncoding RNAs in human saliva as potential disease biomarkers. Front Genet. 2015;7(6):175. doi:10.3389/fgene.2015.00175
Nociti FH, Casati MZ, Duarte PM. Current perspective of the impact of smoking on the progression and treatment of periodontitis. Periodontol 2000 2000. 2015;67(1):187-210. doi:10.1111/prd.12063
do Amaral NS, Cruz e Melo N, de Melo Maia B, Rocha RM. Noncoding RNA profiles in tobacco- and alcohol-associated diseases. Genes (Basel). 2016;8(1):6. doi:10.3390/genes8010006
Bhat MY, Advani J, Rajagopalan P, et al. Cigarette smoke and chewing tobacco alter expression of different sets of miRNAs in oral keratinocytes. Sci Rep. 2018;8(1):7040. doi:10.1590/1678-7757-2019-0382
Mullany LE, Herrick JS, Wolff RK, Stevens JR, Slattery ML. Association of cigarette smoking and microRNA expression in rectal cancer: insight into tumor phenotype. Cancer Epidemiol. 2016;45:98-107. doi:10.1016/j.canep.2016.10.011
Taş B, Güre AO. The effect of maras powder and smoking on the microRNA deregulation of oral mucosa. J Appl Oral Sci. 2020;7(28):e20190382. doi:10.1590/1678-7757-2019-0382
Al-Rawi NH, Al-Marzooq F, Al-Nuaimi AS, Hachim MY, Hamoudi R. Salivary microrna 155, 146a/b and 203: a pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus. PLoS One. 2020;15(8):e0237004. doi:10.1371/journal.pone.0237004
Roganović JR. microRNA-146a and −155, upregulated by periodontitis and type 2 diabetes in oral fluids, are predicted to regulate SARS-CoV-2 oral receptor genes. J Periodontol. 2021;92(7):35-43. doi:10.1002/JPER.20-0623
G. Caton J, Armitage G, Berglundh T, et al. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification. J Clin Periodontol. 2018;45(20):S1-S8. doi:10.1111/jcpe.12935
Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J Periodontol. 2018;89(Suppl 1):159-172. doi:10.1002/JPER.18-0006
Varghese J, Bhat V, Chianeh YR, Kamath V, Al-Haj Husain N, Özcan M. Salivary 8-hydroxyguanosine levels in smokers and non-smokers with chronic periodontitis. Odontology. 2020;108(4):569-577. doi:10.1007/s10266-020-00496-x
Löe H, Silness J. Periodontal disease in pregnancy I Prevalence and Severity. Acta Odontol Scand. 1963;21:533-551. doi:10.3109/00016356309011240
Silness J, Löe H. Periodontal disease in pregnancy II. Correlation between oral hygiene and periodontal condition. Acta Odontol Scand. 1964;22:121-135. doi:10.3109/00016356408993968
Ainamo J, Bay I. Problems and proposals for recording gingivitis and plaque. Int Dent J. 1975;25(4):229-235.
İnce G, Gürsoy H, İpçi ŞD, Cakar G, Emekli-Alturfan E, Yılmaz S. Clinical and biochemical evaluation of lozenges containing lactobacillus reuteri as an adjunct to non-surgical periodontal therapy in chronic periodontitis. J Periodontol. 2015;86(6):746-754. doi:10.1902/jop.2015.140612
Hendek MK, Erdemir EO, Kisa U, Ozcan G. Effect of initial periodontal therapy on oxidative stress markers in gingival Crevicular fluid, saliva, and serum in smokers and non-smokers with chronic periodontitis. J Periodontol. 2015;86(2):273-282. doi:10.1902/jop.2014.140338
Kanmaz B, Lappin DF, Nile CJ, Buduneli N. Effects of smoking on non-surgical periodontal therapy in patients with periodontitis stage III or IV, and grade C. J Periodontol. 2020;91(4):442-453. doi:10.1002/JPER.19-0141
Navazesh M. Methods for collecting saliva. Ann N Y Acad Sci. 1993;20(694):72-77. doi:10.1111/j.1749-6632.1993.tb18343.x
Iwai K, Minamisawa T, Suga K, Yajima Y, Shiba K. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J Extracell Vesicles. 2016;5:30829. doi:10.3402/jev.v5.30829
Gao Y, di Hao C. Expression of miR-146a in saliva of chronic periodontitis patients and its influence on gingival crevicular inflammation and MMP-8/TIMP-1 levels. Shanghai Kou Qiang Yi Xue. 2018;27(3):309-312.
Stoecklin-Wasmer C, Guarnieri P, Celenti R, Demmer RT, Kebschull M, Papapanou PN. MicroRNAs and their target genes in gingival tissues. J Dent Res. 2012;91(10):934-940. doi:10.1177/0022034512456551
Ogata Y, Matsui S, Kato A, Zhou L, Nakayama Y, Taka H. MicroRNA expression in inflamed and noninflamed gingival tissues from Japanese patients. J Oral Sci. 2014;56(4):253-260. doi:10.2334/josnusd.56.253
Sipert CR, Morandini AC, Dionísio TJ, Trachtenberg AJ, Kuo WP, Santos CF. MicroRNA-146a and microRNA-155 show tissue-dependent expression in dental pulp, gingival and periodontal ligament fibroblasts in vitro. J Oral Sci. 2014;56(2):157-164. doi:10.2334/josnusd.56.157
Sattari M, Taheri RA, ArefNezhad R, Motedayyen H. The expression levels of MicroRNA-146a, RANKL and OPG after non-surgical periodontal treatment. BMC Oral Health. 2021;21(1):523. doi:10.1186/s12903-021-01883-8
Radović N, Nikolić Jakoba N, Petrović N, Milosavljević A, Brković B, Roganović J. MicroRNA-146a and microRNA-155 as novel crevicular fluid biomarkers for periodontitis in non-diabetic and type 2 diabetic patients. J Clin Periodontol. 2018;45(6):663-671. doi:10.1111/jcpe.12888
Elazazy O, Amr K, Abd El Fattah A, Abouzaid M. Evaluation of serum and gingival crevicular fluid microRNA-223, microRNA-203 and microRNA-200b expression in chronic periodontitis patients with and without diabetes type 2. Arch Oral Biol. 2021;121:104949. doi:10.1016/j.archoralbio.2020.104949
Moffatt CE, Lamont RJ. Porphyromonas gingivalis induction of microRNA-203 expression controls suppressor of cytokine signaling 3 in gingival epithelial cells. Infect Immun. 2011;79(7):2632-2637. doi:10.1128/IAI.00082-11
Honda T, Takahashi N, Miyauchi S, Yamazaki K. Porphyromonas gingivalis lipopolysaccharide induces miR-146a without altering the production of inflammatory cytokines. Biochem Biophys Res Commun. 2012;420(4):918-925. doi:10.1016/j.bbrc.2012.03.102
Li Z, Hassan MQ, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2019;294(25):10018. doi:10.1074/jbc.M809787200
Vrijens K, Bollati V, Nawrot TS. MicroRNAs as potential signatures of environmental exposure or effect: a systematic review. Environ Health Perspect. 2015;123(5):399-411. doi:10.1289/ehp.1408459
Conickx G, Avila Cobos F, Van Den Berge M, et al. MicroRNA profiling in lung tissue and bronchoalveolar lavage of cigarette smoke-exposed mice and in COPD patients: a translational approach. Sci Rep. 2017;7(1):12871. doi:10.1038/s41598-017-13265-8
Mascaux C, Laes JF, Anthoine G, et al. Evolution of microRNA expression during human bronchial squamous carcinogenesis. Eur Respir J. 2009;33(2):352-359. doi:10.1183/09031936.00084108
Scott DA, Palmer RM, Stapleton JA. Validation of smoking status in clinical research into inflammatory periodontal disease. J Clin Periodontol. 2001;28(8):715-722. doi:10.1034/j.1600-051X.2001.280801.x