Polar auxin transport modulates early leaf flattening.
auxin
flattening
leaf development
patterning
polar auxin transport
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
13 12 2022
13 12 2022
Historique:
entrez:
5
12
2022
pubmed:
6
12
2022
medline:
10
12
2022
Statut:
ppublish
Résumé
The flattened leaf form is an important adaptation for efficient photosynthesis, and the developmental process of flattened leaves has been intensively studied. Classic microsurgery studies in potato and tomato suggest that the shoot apical meristem (SAM) communicates with the leaf primordia to promote leaf blade formation. More recently, it was found that polar auxin transport (PAT) could mediate this communication. However, it is unclear how the expression of leaf patterning genes is tailored by PAT routes originating from SAM. By combining experimental observations and computer model simulations, we show that microsurgical incisions and local inhibition of PAT in tomato interfere with auxin transport toward the leaf margins, reducing auxin response levels and altering the leaf blade shape. Importantly, oval auxin responses result in the bipolar expression of
Identifiants
pubmed: 36469773
doi: 10.1073/pnas.2215569119
pmc: PMC9897438
doi:
Substances chimiques
Indoleacetic Acids
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2215569119Références
Development. 2016 Sep 15;143(18):3230-7
pubmed: 27624828
Plant J. 2020 Nov;104(4):1073-1087
pubmed: 32889762
Development. 2005 Jan;132(1):15-26
pubmed: 15563522
Curr Biol. 2019 Jun 3;29(11):1746-1759.e5
pubmed: 31104930
J Integr Plant Biol. 2018 Jun;60(6):455-464
pubmed: 29405646
Abiotech. 2020 May 27;1(3):178-184
pubmed: 36303571
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18769-74
pubmed: 25512543
Curr Biol. 2020 Oct 19;30(20):3972-3985.e6
pubmed: 32916107
BMC Genomics. 2015 Oct 28;16:878
pubmed: 26511108
Nat Plants. 2020 Sep;6(9):1082-1090
pubmed: 32807951
J Exp Bot. 2021 Feb 27;72(5):1822-1835
pubmed: 33277994
Nat Plants. 2022 Mar;8(3):269-280
pubmed: 35318449
Genes Dev. 2009 Feb 1;23(3):373-84
pubmed: 19204121
Development. 2013 Jun;140(11):2253-68
pubmed: 23674599
Elife. 2017 Sep 12;6:
pubmed: 28895530
Development. 2018 Jul 10;145(13):
pubmed: 29991476
New Phytol. 2019 Jan;221(2):706-724
pubmed: 30106472
Mol Syst Biol. 2011 Jul 05;7:508
pubmed: 21734647
Curr Biol. 2017 Oct 9;27(19):2940-2950.e4
pubmed: 28943086
Genes Dev. 2009 Sep 1;23(17):1986-97
pubmed: 19723761
Nature. 2003 Nov 20;426(6964):255-60
pubmed: 14628043
Curr Biol. 2005 Nov 8;15(21):1899-911
pubmed: 16271866
Dev Cell. 2017 Nov 6;43(3):265-273.e6
pubmed: 29107557
J Integr Plant Biol. 2019 Nov;61(11):1114-1120
pubmed: 31267663
J Genet Genomics. 2017 Dec 20;44(12):599-601
pubmed: 29246860
Mol Plant. 2018 Sep 10;11(9):1117-1134
pubmed: 29960106
Nature. 1951 Apr 21;167(4251):651-2
pubmed: 14826895
Nat Plants. 2017 Sep;3(9):724-733
pubmed: 29150691
Dev Biol. 2016 Nov 1;419(1):85-98
pubmed: 27554165
Plant Cell Environ. 2009 Sep;32(9):1258-71
pubmed: 19453483
Development. 2021 Sep 15;148(18):
pubmed: 34132346
Plant J. 2017 Nov;92(3):469-480
pubmed: 28849614
Cold Spring Harb Perspect Biol. 2010 Apr;2(4):a001487
pubmed: 20452945
Plant Cell. 2010 Oct;22(10):3206-17
pubmed: 20959562
Elife. 2020 May 07;9:
pubmed: 32379043