Activation priming and cytokine polyfunctionality modulate the enhanced functionality of low-affinity CD19 CAR T cells.


Journal

Blood advances
ISSN: 2473-9537
Titre abrégé: Blood Adv
Pays: United States
ID NLM: 101698425

Informations de publication

Date de publication:
09 05 2023
Historique:
accepted: 09 11 2022
received: 05 07 2022
medline: 1 5 2023
pubmed: 2 12 2022
entrez: 1 12 2022
Statut: ppublish

Résumé

We recently described a low-affinity second-generation CD19 chimeric antigen receptor (CAR) CAT that showed enhanced expansion, cytotoxicity, and antitumor efficacy compared with the high-affinity (FMC63-based) CAR used in tisagenlecleucel, in preclinical models. Furthermore, CAT demonstrated an excellent toxicity profile, enhanced in vivo expansion, and long-term persistence in a phase 1 clinical study. To understand the molecular mechanisms behind these properties of CAT CAR T cells, we performed a systematic in vitro characterization of the transcriptomic (RNA sequencing) and protein (cytometry by time of flight) changes occurring in T cells expressing low-affinity vs high-affinity CD19 CARs following stimulation with CD19-expressing cells. Our results show that CAT CAR T cells exhibit enhanced activation to CD19 stimulation and a distinct transcriptomic and protein profile, with increased activation and cytokine polyfunctionality compared with FMC63 CAR T cells. We demonstrate that the enhanced functionality of low-affinity CAT CAR T cells is a consequence of an antigen-dependent priming induced by residual CD19-expressing B cells present in the manufacture.

Identifiants

pubmed: 36453632
pii: 493357
doi: 10.1182/bloodadvances.2022008490
pmc: PMC10182295
doi:

Substances chimiques

Cytokines 0
Receptors, Chimeric Antigen 0
Adaptor Proteins, Signal Transducing 0
Antigens, CD19 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1725-1738

Informations de copyright

© 2023 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.

Références

Nat Med. 2015 Jun;21(6):581-90
pubmed: 25939063
Cancer Res. 2006 Nov 15;66(22):10995-1004
pubmed: 17108138
Nat Med. 2019 Sep;25(9):1408-1414
pubmed: 31477906
Cancer Cell. 2020 Feb 10;37(2):216-225.e6
pubmed: 32004441
Nat Commun. 2020 Jan 10;11(1):219
pubmed: 31924795
Oncoimmunology. 2015 Aug 20;5(1):e1072671
pubmed: 26942092
J Immunol. 2006 May 15;176(10):5975-87
pubmed: 16670306
Cytometry A. 2015 Jul;87(7):636-45
pubmed: 25573116
STAR Protoc. 2022 Feb 09;3(1):101174
pubmed: 35199038
Eur J Immunol. 2010 Aug;40(8):2211-20
pubmed: 20540114
J Immunol. 2004 Dec 15;173(12):7647-53
pubmed: 15585893
Blood. 2014 Jul 10;124(2):188-95
pubmed: 24876563
Cancer Res. 2015 Sep 1;75(17):3505-18
pubmed: 26330164
Genomics Proteomics Bioinformatics. 2019 Apr;17(2):129-139
pubmed: 31229590
PLoS One. 2014 Feb 10;9(2):e85328
pubmed: 24520316
J Immunother Cancer. 2021 May;9(5):
pubmed: 34006631
J Clin Oncol. 2021 Oct 20;39(30):3352-3363
pubmed: 34464155
Blood. 2018 Aug 23;132(8):804-814
pubmed: 29895668
Trends Immunol. 2002 Dec;23(12):592-5
pubmed: 12464571
Cancer Immunol Res. 2015 Apr;3(4):356-67
pubmed: 25600436
Curr Hematol Malig Rep. 2018 Oct;13(5):396-406
pubmed: 30120708
MAbs. 2020 Jan-Dec;12(1):1688616
pubmed: 31852337
Nature. 2006 Apr 13;440(7086):890-5
pubmed: 16612374
J Immunol. 2001 Mar 1;166(5):2917-21
pubmed: 11207239
Nat Med. 2021 Aug;27(8):1419-1431
pubmed: 34312556
Nat Med. 2021 May;27(5):842-850
pubmed: 33888899
Cell Rep. 2017 Oct 3;21(1):17-26
pubmed: 28978471
Int Immunol. 2007 Apr;19(4):345-54
pubmed: 17329235
Front Immunol. 2018 Oct 26;9:2486
pubmed: 30416506
Blood. 2006 Jun 15;107(12):4781-9
pubmed: 16467198
Cancer Discov. 2017 Dec;7(12):1404-1419
pubmed: 29025771
Curr Pharm Biotechnol. 2018;19(1):5-18
pubmed: 29667553
Blood. 2016 Jun 16;127(24):2980-90
pubmed: 27118452
PLoS One. 2016 Mar 23;11(3):e0151859
pubmed: 27008164
Cancer Res. 2015 Sep 1;75(17):3596-607
pubmed: 26330166
Nat Commun. 2021 Jan 18;12(1):409
pubmed: 33462245
Nat Rev Immunol. 2012 Mar 16;12(4):306-15
pubmed: 22421787
Nature. 1995 May 11;375(6527):148-51
pubmed: 7753171
J Immunol. 2002 Jan 15;168(2):763-70
pubmed: 11777970

Auteurs

Ilaria M Michelozzi (IM)

Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.

Eduardo Gomez-Castaneda (E)

Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.

Ruben V C Pohle (RVC)

Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.

Ferran Cardoso Rodriguez (F)

Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, United Kingdom.

Jahangir Sufi (J)

Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, United Kingdom.

Pau Puigdevall Costa (P)

Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.

Meera Subramaniyam (M)

Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.

Efstratios Kirtsios (E)

Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.

Ayad Eddaoudi (A)

Flow Cytometry Core Facility, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.

Si Wei Wu (SW)

Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.

Aleks Guvenel (A)

Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.

Jonathan Fisher (J)

Developmental Biology and Cancer Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.

Sara Ghorashian (S)

Developmental Biology and Cancer Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.

Martin A Pule (MA)

Cancer Institute, University College London, London, United Kingdom.

Christopher J Tape (CJ)

Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, United Kingdom.

Sergi Castellano (S)

Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
UCL Genomics, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom.

Persis J Amrolia (PJ)

Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.
Department of Bone Marrow Transplant, Great Ormond Street Hospital for Children, London, United Kingdom.

Alice Giustacchini (A)

Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.

Articles similaires

Humans Receptors, Antigen, T-Cell Proto-Oncogene Proteins p21(ras) Pancreatic Neoplasms T-Lymphocytes

A dual role for PSIP1/LEDGF in T cell acute lymphoblastic leukemia.

Lisa Demoen, Filip Matthijssens, Lindy Reunes et al.
1.00
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma Animals Mice Humans Cell Line, Tumor
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism
Animals Lung India Sheep Transcriptome

Classifications MeSH