Relationship Between Optical Coherence Tomography-Derived In-Stent Neoatherosclerosis and the Extent of Lipid-Rich Neointima by Near-Infrared Spectroscopy and Intravascular Ultrasound: A Multimodal Imaging Study.
in‐stent restenosis
near‐infrared spectroscopy
neoatherosclerosis
optical coherence tomography
optical frequency domain imaging
Journal
Journal of the American Heart Association
ISSN: 2047-9980
Titre abrégé: J Am Heart Assoc
Pays: England
ID NLM: 101580524
Informations de publication
Date de publication:
06 12 2022
06 12 2022
Historique:
pubmed:
30
11
2022
medline:
15
12
2022
entrez:
29
11
2022
Statut:
ppublish
Résumé
Background In-stent restenosis, especially for neoatherosclerosis, is a major concern following percutaneous coronary intervention. This study aimed to elucidate the association of features of in-stent restenosis lesions revealed by optical coherence tomography (OCT)/optical frequency domain imaging (OFDI) and the extent of lipid-rich neointima (LRN) assessed by near-infrared spectroscopy (NIRS) and intravascular ultrasound, especially for neoatherosclerosis. Methods and Results We analyzed patients undergoing percutaneous coronary intervention for in-stent restenosis lesions using both OCT/OFDI and NIRS-intravascular ultrasound. OCT/OFDI-derived neoatherosclerosis was defined as lipid neointima. The existence of large LRN (defined as a long segment with 4-mm maximum lipid core burden index ≥400) was evaluated by NIRS. In 59 patients with 64 lesions, neoatherosclerosis and large LRN were observed in 17 (26.6%) and 21 lesions (32.8%), respectively. Naturally, large LRN showed higher 4-mm maximum lipid core burden index (median [interquartile range], 623 [518-805] versus 176 [0-524];
Identifiants
pubmed: 36444847
doi: 10.1161/JAHA.122.026569
pmc: PMC9851451
doi:
Substances chimiques
Lipids
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e026569Références
Eur Heart J Cardiovasc Imaging. 2017 Jun 01;18(6):663-669
pubmed: 27679596
Heart Vessels. 2020 Sep;35(9):1193-1200
pubmed: 32253529
J Am Coll Cardiol. 2012 Mar 20;59(12):1058-72
pubmed: 22421299
Lancet. 2019 Nov 2;394(10209):1629-1637
pubmed: 31570255
J Am Coll Cardiol. 2001 Apr;37(5):1478-92
pubmed: 11300468
Circ Cardiovasc Interv. 2013 Oct 1;6(5):507-17
pubmed: 24065447
J Am Coll Cardiol. 2015 Aug 4;66(5):495-507
pubmed: 26227186
Am Heart J. 2009 Aug;158(2):284-93
pubmed: 19619707
J Am Coll Cardiol. 2004 Jun 2;43(11):2142-6
pubmed: 15172426
JACC Cardiovasc Imaging. 2009 Jul;2(7):858-68
pubmed: 19608137
Eur Heart J Cardiovasc Imaging. 2022 Jan 24;23(2):217-228
pubmed: 33637979
J Am Coll Cardiol. 2011 Mar 15;57(11):1314-22
pubmed: 21376502
Eur Heart J Cardiovasc Imaging. 2021 Jun 22;22(7):824-834
pubmed: 31990323
Circulation. 2007 May 1;115(17):2344-51
pubmed: 17470709
JACC Cardiovasc Interv. 2009 Nov;2(11):1035-46
pubmed: 19926041
Cardiovasc Interv Ther. 2020 Jan;35(1):1-12
pubmed: 31571149
Heart. 2014 Jan;100(2):153-9
pubmed: 24270744
Atherosclerosis. 2015 Oct;242(2):553-9
pubmed: 26318104
Circ Cardiovasc Interv. 2009 Jun;2(3):205-12
pubmed: 20031717
JACC Cardiovasc Imaging. 2008 Sep;1(5):638-48
pubmed: 19356494
JACC Cardiovasc Interv. 2013 Aug;6(8):838-46
pubmed: 23871513
Lancet. 2021 Mar 13;397(10278):985-995
pubmed: 33714389
Int J Cardiol Heart Vasc. 2021 Mar 11;33:100747
pubmed: 33748401
Circulation. 2002 Oct 22;106(17):2200-6
pubmed: 12390948
Circ Cardiovasc Imaging. 2016 Jan;9(1):
pubmed: 26729855
EuroIntervention. 2021 Aug 27;17(6):489-496
pubmed: 32985411
JACC Cardiovasc Interv. 2016 Dec 26;9(24):2511-2523
pubmed: 27889345
Circulation. 2002 Sep 24;106(13):1640-5
pubmed: 12270856
Cardiovasc Interv Ther. 2020 Apr;35(2):105-116
pubmed: 32125622
EuroIntervention. 2016 Dec 10;12(11):e1366-e1374
pubmed: 26690315
Cardiovasc Interv Ther. 2020 Jan;35(1):13-18
pubmed: 31602597
J Cardiol. 2018 Mar;71(3):244-250
pubmed: 29066157
Circulation. 2014 Jan 14;129(2):211-23
pubmed: 24163064
Eur Heart J. 2015 Aug 21;36(32):2147-59
pubmed: 25994755