Echo-Doppler measures of right ventricular systolic function are affected by reduced left ventricular systolic function.

TAPSE TAPSE/PASP ratio TAPSE/PVR ratio echo-Doppler imaging left ventricular function pulmonary vascular resistance right ventricular function

Journal

Echocardiography (Mount Kisco, N.Y.)
ISSN: 1540-8175
Titre abrégé: Echocardiography
Pays: United States
ID NLM: 8511187

Informations de publication

Date de publication:
12 2022
Historique:
revised: 04 10 2022
received: 01 08 2022
accepted: 19 10 2022
pubmed: 27 11 2022
medline: 15 12 2022
entrez: 26 11 2022
Statut: ppublish

Résumé

Objective right ventricular (RV) systolic function assessment is attained using a series of well-described and validated echo-Doppler measurements. However, how left ventricular (LV) systolic function influences these RV functional measurements has not been previously studied. Consequently, we conducted a retrospective proof-of-concept analysis to answer this important question. A total of 100 echocardiographic studies were included and patients were divided into two groups according to their LV ejection fraction (LVEF). The following RV variables were acquired including, tricuspid annular systolic plane excursion (TAPSE), velocity of the systolic motion (TA TDI s'), RV outflow tract velocity time integral (VTI), pulmonary vascular resistance (PVR), and the TAPSE to pulmonary artery systolic pressure (PASP) ratio. Not only TAPSE, TA DI s', RVOT VTI, PVR, and TAPSE/PASP were all significantly different between patients with normal versus abnormal LVEF; but most importantly, RVOT VTI (p < .0001) was the best discriminatory variable in assessing normal versus abnormal LVEF followed by TAPSE (p = .0001). Using receiver operating characteristic curve analysis, an RVOT VTI value > 11 identified patients with a normal LVEF with a sensitivity of 90% and specificity of 76%. Based on our results, reduced LVEF affects the RV, likely mediated by mechanisms of interventricular dependence. Therefore, RV analysis cannot be performed in isolation as it not only reflects intrinsic RV systolic function but also, is dependent on LV systolic function. In cases of reduced LVEF, additional measures of RV assessment should be used to provide better objective assessments.

Sections du résumé

BACKGROUND
Objective right ventricular (RV) systolic function assessment is attained using a series of well-described and validated echo-Doppler measurements. However, how left ventricular (LV) systolic function influences these RV functional measurements has not been previously studied. Consequently, we conducted a retrospective proof-of-concept analysis to answer this important question.
METHODS
A total of 100 echocardiographic studies were included and patients were divided into two groups according to their LV ejection fraction (LVEF). The following RV variables were acquired including, tricuspid annular systolic plane excursion (TAPSE), velocity of the systolic motion (TA TDI s'), RV outflow tract velocity time integral (VTI), pulmonary vascular resistance (PVR), and the TAPSE to pulmonary artery systolic pressure (PASP) ratio.
RESULTS
Not only TAPSE, TA DI s', RVOT VTI, PVR, and TAPSE/PASP were all significantly different between patients with normal versus abnormal LVEF; but most importantly, RVOT VTI (p < .0001) was the best discriminatory variable in assessing normal versus abnormal LVEF followed by TAPSE (p = .0001). Using receiver operating characteristic curve analysis, an RVOT VTI value > 11 identified patients with a normal LVEF with a sensitivity of 90% and specificity of 76%.
CONCLUSION
Based on our results, reduced LVEF affects the RV, likely mediated by mechanisms of interventricular dependence. Therefore, RV analysis cannot be performed in isolation as it not only reflects intrinsic RV systolic function but also, is dependent on LV systolic function. In cases of reduced LVEF, additional measures of RV assessment should be used to provide better objective assessments.

Identifiants

pubmed: 36433719
doi: 10.1111/echo.15484
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1540-1547

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117:1717-1731.
Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436-1448.
Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685-713. quiz 786-8. doi:10.1016/j.echo.2010.05.010. PMID: 20620859.
Kaul S, Tei C, Hopkins JM, Shah PM. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J. 1984;107:526-531.
Miller D, Farah MG, Liner A, Fox K, Schluchter M, Hoit BD. The relation between quantitative right ventricular ejection fraction and indices of tricuspid annular motion and myocardial performance. J Am Soc Echocardiogr. 2004;17:443-447.
López-Candales A, Rajagopalan N, Gulyasy B, Edelman K, Bazaz R. Comparative echocardiographic analysis of mitral and tricuspid annular motion: differences explained with proposed anatomic-structural correlates. Echocardiography. 2007;24(4):353-359. doi:10.1111/j.1540-8175.2006.00408.x
Bazaz R, Edelman K, Gulyasy B. López-Candales A. Evidence of robust coupling of atrioventricular mechanical function of the right side of the heart: insights from M-mode analysis of annular motion. Echocardiography. 2008;25(6):557-561. doi:10.1111/j.1540-8175.2008.00676.x. Epub 2008 Apr 8. PMID: 18422666.
Saxena N, Rajagopalan N, Edelman K, López-Candales A. Tricuspid annular systolic velocity: a useful measurement in determining right ventricular systolic function regardless of pulmonary artery pressures. Echocardiography. 2006;23(9):750-755. doi:10.1111/j.1540-8175.2006.00305.x. PMID: 16999693.
López-Candales A, Shaver J, Edelman K, Candales MD. Temporal differences in ejection between right and left ventricles in chronic pulmonary hypertension: a pulsed Doppler study. Int J Cardiovasc Imaging. 2012;28(8):1943-1950. doi:10.1007/s10554-011-9971-6. Epub 2012 Apr 5. PMID: 22476907.
Lopez-Candales A, Edelman K, Gulyasy B, Candales MD. Differences in the duration of total ejection between right and left ventricles in chronic pulmonary hypertension. Echocardiography. 2011;28(5):509-515. doi:10.1111/j.1540-8175.2010.01377.x. Epub 2011 May 4. PMID: 21539602.
López-Candales A, Edelman K. Ratio of right to left ventricular ejection: a pilot study using Doppler to detect interventricular dyssynchrony. Clin Cardiol. 2011;34(6):366-371. doi:10.1002/clc.20889. Epub 2011 Apr 27. PMID: 21538384. PMCID: PMC6652558.
Todaro MC, Carerj S, Zito C, et al. Echocardiographic evaluation of right ventricular-arterial coupling in pulmonary hypertension. Am J Cardiovasc Dis. 2020;10(4):272-283.
Monge García MI, Santos A. Understanding ventriculo-arterial coupling. Ann Transl Med. 2020;8(12):795. 10.21037/atm.2020.04.10
Tello K, Axmann J, Ghofrani HA, et al. Relevance of the TAPSE/PASP ratio in pulmonary arterial hypertension. Int J Cardiol. 2018;266:229-235. doi:10.1016/j.ijcard.2018.01.053. PMID: 29887454.
Tello K, Wan J, Dalmer A, et al. Validation of the tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio for the assessment of right ventricular-arterial coupling in severe pulmonary hypertension. Circ Cardiovasc Imaging. 2019;12(9):e009047. doi:10.1161/CIRCIMAGING.119.009047. Epub 2019 Sep 10. PMID: 31500448; PMCID: PMC7099862.
López-Candales A, Rajagopalan N, Saxena N, Gulyasy B, Edelman K, Bazaz R. Right ventricular systolic function is not the sole determinant of tricuspid annular motion. Am J Cardiol. 2006 Oct 1;98(7):973-977. doi:10.1016/j.amjcard.2006.04.041. Epub 2006 Aug 17. PMID: 16996886.
Gupta S, Khan F, Shapiro M, Weeks SG, Litwin SE, Michaels AD. The associations between tricuspid annular plane systolic excursion (TAPSE), ventricular dyssynchrony, and ventricular interaction in heart failure patients. Eur J Echocardiogr. 2008;9:766-771.
Legris V, Thibault B, Dupuis J, et al. Right ventricular function and its coupling to pulmonary circulation predicts exercise tolerance in systolic heart failure. ESC Heart Fail. 2022;9(1):450-464. doi:10.1002/ehf2.13726. Epub 2021 Dec 24. PMID: 34953062. PMCID: PMC8788036.
Kjaergaard J, Iversen KK, Akkan D, et al. Predictors of right ventricular function as measured by tricuspid annular plane systolic excursion in heart failure. Cardiovasc Ultrasound. 2009;7:51. doi:10.1186/1476-7120-7-51
Guazzi M, Naeije R, Arena R, et al. Echocardiography of right ventriculoarterial coupling combined with cardiopulmonary exercise testing to predict outcome in heart failure. Chest. 2015;148:226-234. doi:10.1378/chest.14-2065
Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39. e14.
Matos J, Kronzon I, Panagopoulos G, Perk G. Mitral annular plane systolic excursion as a surrogate for left ventricular ejection fraction. J Am Soc Echocardiogr. 2012;25(9):969-974. doi:10.1016/j.echo.2012.06.011
Park YS, Park JH, Ahn KT, et al. Usefulness of mitral annular systolic velocity in the detection of left ventricular systolic dysfunction: comparison with three dimensional echocardiography data. J Cardiovasc Ultrasound. 2010;18(1):1-5. doi:10.4250/jcu.2010.18.1.1
Huntsman LL, Stewart DK, Barnes SR, Franklin SB, Colocousis JS, Hessel EA. Noninvasive Doppler estimation of cardiac output in man, clinical validation. Circulation. 1983;67:593-602.
Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22(2):107-133. doi:10.1016/j.echo.2008.11.023
Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol. 2003;41(6):1021-1027. doi:10.1016/s0735-1097(02)02973-x. PMID: 12651052.
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29-36. doi:10.1148/radiology.143.1.7063747. PMID: 7063747.
Janicki JS. Influence of the pericardium and ventricular interdependence on left ventricular diastolic and systolic function in patients with heart failure. Circulation. 1990;81(2 Suppl):III15-20.
Naeije R, Badagliacca R. The overloaded right heart and ventricular interdependence. Cardiovasc Res. 2017;113(12):1474-1485. doi:10.1093/cvr/cvx160
Santamore WP, Dell'Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40(4):289-308. doi:10.1016/s0033-0620(98)80049-2. PMID: 9449956.
John R, Lee S, Eckman P, Liao K, Right ventricular failure-a continuing problem in patients with left ventricular assist device support. J Cardiovasc Transl Res. 2010;3(6):604-611. doi:10.1007/s12265-010-9216-4. Epub 2010 Sep 1. PMID: 20811791.
Denault AY, Couture P, Beaulieu Y, et al. Right ventricular depression after cardiopulmonary bypass for valvular surgery. J Cardiothorac Vasc Anesth. 2015;29(4):836-844. doi:10.1053/j.jvca.2015.01.011. Epub 2015 Jan 8. PMID: 25976606.
Buckberg G, Athanasuleas C, Saleh S. Septal myocardial protection during cardiac surgery for prevention of right ventricular dysfunction. Anatol J Cardiol. 2008; 8: 108-116
Kocica MJ, Corno AF, Lackovic V, Kanjuh VI. The helical ventricular myocardial band of Torrent-Guasp. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2007:52-60. doi:10.1053/j.pcsu.2007.01.006. PMID: 17433993.
Hristov N, Liakopoulos OJ, Buckberg GD, Trummer G. Septal structure and function relationships parallel the left ventricular free wall ascending and descending segments of the helical heart. Eur J Cardiothorac Surg. 2006;29 Suppl 1:S115-25. doi:10.1016/j.ejcts.2006.02.041. Epub 2006 Mar 24. PMID: 16564184.
Buckberg GD; RESTORE Group. The ventricular septum: the lion of right ventricular function, and its impact on right ventricular restoration. Eur J Cardiothorac Surg. 2006;29 Suppl 1:S272-8. doi:10.1016/j.ejcts.2006.02.011. Epub 2006 Mar 29. PMID: 16567103.
Dubin AM, Janousek J, Rhee E et al. Resynchronization therapy in pediatric and congenital heart disease patients: an international multicenter study. J Am Coll Cardiol. 2005; 46: 2277-2283.
Bosch L, Lam CSP, Gong L et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur J Heart Fail. 2017;19(12):1664-1671. doi:10.1002/ejhf.873. Epub 2017 Jun 8. PMID: 28597497.
Santas E, Palau P, Guazzi M et al. Usefulness of right ventricular to pulmonary circulation coupling as an indicator of risk for recurrent admissions in heart failure with preserved ejection fraction. Am J Cardiol. 2019;124(4):567-572. doi:10.1016/j.amjcard.2019.05.024. Epub 2019 May 25. PMID: 31204033.
Trejo-Velasco B, Estevez-Loureiro R, Carrasco-Chinchilla F, et al. Prognostic role of TAPSE to PASP ratio in patients undergoing MitraClip procedure. J Clin Med. 2021;10(5):1006. doi:10.3390/jcm10051006. PMID: 33801311; PMCID: PMC7958333.
Hsiao SH, Lin SK, Wang WC, Yang SH, Gin PL, Liu CP. Severe tricuspid regurgitation shows significant impact in the relationship among peak systolic tricuspid annular velocity, tricuspid annular plane systolic excursion, and right ventricular ejection fraction. J Am Soc Echocardiogr. 2006;19(7):902-910. doi:10.1016/j.echo.2006.01.014. PMID: 16825000.
Dubin J, Wallerson DC, Cody RJ, Devereux RB. Comparative accuracy of Doppler echocardiographic methods for clinical stroke volume determination. Am Heart J. 1990;120(1):116-123. doi:10.1016/0002-8703(90)90168-w. PMID: 2360495.
Coats AJ. Doppler ultrasonic measurement of cardiac output: reproducibility and validation. Eur Heart J. 1990;11 Suppl I:49-61. doi:10.1093/eurheartj/11.suppl_i.49. PMID: 2092990.
Pozzoli M, Capomolla S, Cobelli F, Tavazzi L. Reproducibility of Doppler indices of left ventricular systolic and diastolic function in patients with severe chronic heart failure. Eur Heart J. 1995;16(2):194-200. doi:10.1093/oxfordjournals.eurheartj.a060885. PMID: 7744091.
Labovitz AJ, Buckingham TA, Habermehl K, Nelson J, Kennedy HL, Williams GA. The effects of sampling site on the two-dimensional echo-Doppler determination of cardiac output. Am Heart J. 1985;109(2):327-332. doi:10.1016/0002-8703(85)90602-7. PMID: 3966349.
López-Candales A, Vallurupalli S. Right ventricular free wall contractility in subcostal views: a proof-of-concept study to assess right ventricular systolic function. Echocardiography. 2021;38(12):2052-2059. doi:10.1111/echo.15258. Epub 2021 Nov 30. PMID: 34847245.

Auteurs

Angel López-Candales (A)

Cardiovascular Medicine Division, University Health Truman Medical Center, University, of Missouri-Kansas City, Kansas City, Missouri, USA.

Srikanth Vallurupalli (S)

Cardiology Division, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH