Genetic Variants in ARHGEF6 Cause Congenital Anomalies of the Kidneys and Urinary Tract in Humans, Mice, and Frogs.


Journal

Journal of the American Society of Nephrology : JASN
ISSN: 1533-3450
Titre abrégé: J Am Soc Nephrol
Pays: United States
ID NLM: 9013836

Informations de publication

Date de publication:
01 02 2023
Historique:
received: 27 01 2022
accepted: 08 11 2022
pmc-release: 01 02 2024
pubmed: 23 11 2022
medline: 8 2 2023
entrez: 22 11 2022
Statut: ppublish

Résumé

About 40 disease genes have been described to date for isolated CAKUT, the most common cause of childhood CKD. However, these genes account for only 20% of cases. ARHGEF6, a guanine nucleotide exchange factor that is implicated in biologic processes such as cell migration and focal adhesion, acts downstream of integrin-linked kinase (ILK) and parvin proteins. A genetic variant of ILK that causes murine renal agenesis abrogates the interaction of ILK with a murine focal adhesion protein encoded by Parva , leading to CAKUT in mice with this variant. To identify novel genes that, when mutated, result in CAKUT, we performed exome sequencing in an international cohort of 1265 families with CAKUT. We also assessed the effects in vitro of wild-type and mutant ARHGEF6 proteins, and the effects of Arhgef6 deficiency in mouse and frog models. We detected six different hemizygous variants in the gene ARHGEF6 (which is located on the X chromosome in humans) in eight individuals from six families with CAKUT. In kidney cells, overexpression of wild-type ARHGEF6 -but not proband-derived mutant ARHGEF6 -increased active levels of CDC42/RAC1, induced lamellipodia formation, and stimulated PARVA-dependent cell spreading. ARHGEF6-mutant proteins showed loss of interaction with PARVA. Three-dimensional Madin-Darby canine kidney cell cultures expressing ARHGEF6-mutant proteins exhibited reduced lumen formation and polarity defects. Arhgef6 deficiency in mouse and frog models recapitulated features of human CAKUT. Deleterious variants in ARHGEF6 may cause dysregulation of integrin-parvin-RAC1/CDC42 signaling, thereby leading to X-linked CAKUT.

Sections du résumé

BACKGROUND
About 40 disease genes have been described to date for isolated CAKUT, the most common cause of childhood CKD. However, these genes account for only 20% of cases. ARHGEF6, a guanine nucleotide exchange factor that is implicated in biologic processes such as cell migration and focal adhesion, acts downstream of integrin-linked kinase (ILK) and parvin proteins. A genetic variant of ILK that causes murine renal agenesis abrogates the interaction of ILK with a murine focal adhesion protein encoded by Parva , leading to CAKUT in mice with this variant.
METHODS
To identify novel genes that, when mutated, result in CAKUT, we performed exome sequencing in an international cohort of 1265 families with CAKUT. We also assessed the effects in vitro of wild-type and mutant ARHGEF6 proteins, and the effects of Arhgef6 deficiency in mouse and frog models.
RESULTS
We detected six different hemizygous variants in the gene ARHGEF6 (which is located on the X chromosome in humans) in eight individuals from six families with CAKUT. In kidney cells, overexpression of wild-type ARHGEF6 -but not proband-derived mutant ARHGEF6 -increased active levels of CDC42/RAC1, induced lamellipodia formation, and stimulated PARVA-dependent cell spreading. ARHGEF6-mutant proteins showed loss of interaction with PARVA. Three-dimensional Madin-Darby canine kidney cell cultures expressing ARHGEF6-mutant proteins exhibited reduced lumen formation and polarity defects. Arhgef6 deficiency in mouse and frog models recapitulated features of human CAKUT.
CONCLUSIONS
Deleterious variants in ARHGEF6 may cause dysregulation of integrin-parvin-RAC1/CDC42 signaling, thereby leading to X-linked CAKUT.

Identifiants

pubmed: 36414417
pii: 00001751-202302000-00014
doi: 10.1681/ASN.2022010050
pmc: PMC10103091
doi:

Substances chimiques

Integrins 0
Mutant Proteins 0
Arhgef6 protein, mouse 0
Rho Guanine Nucleotide Exchange Factors 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

273-290

Subventions

Organisme : NIDDK NIH HHS
ID : K08 DK125768
Pays : United States
Organisme : NHGRI NIH HHS
ID : UM1 HG006504
Pays : United States
Organisme : NICHD NIH HHS
ID : K12 HD052896
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK076683
Pays : United States
Organisme : NIDDK NIH HHS
ID : F32 DK122766
Pays : United States
Organisme : NHGRI NIH HHS
ID : U24 HG008956
Pays : United States

Informations de copyright

Copyright © 2022 by the American Society of Nephrology.

Références

van der Ven AT, Vivante A, Hildebrandt F. Novel insights into the pathogenesis of monogenic congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol. 2018;29(1):36-50. doi: 10.1681/ASN.2017050561
doi: 10.1681/ASN.2017050561
Vivante A, Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol. 2016;12(3):133-146. doi: 10.1038/nrneph.2015.205
doi: 10.1038/nrneph.2015.205
Vivante A, Kohl S, Hwang DY, Dworschak GC, Hildebrandt F. Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr Nephrol. 2014;29(4):695-704. doi: 10.1007/s00467-013-2684-4
doi: 10.1007/s00467-013-2684-4
van der Ven AT, Connaughton DM, Ityel H, et al. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol. 2018;29(9):2348-2361. doi: 10.1681/ASN.2017121265
doi: 10.1681/ASN.2017121265
Davies J. Intracellular and extracellular regulation of ureteric bud morphogenesis. J Anat. 2001;198(3):257-264. doi: 10.1046/j.1469-7580.2000.19830257.x
doi: 10.1046/j.1469-7580.2000.19830257.x
Kreidberg JA, Symons JM. Integrins in kidney development, function, and disease. Am J Physiol Renal Physiol. 2000;279(2):F233-F242. doi: 10.1152/ajprenal.2000.279.2.F233
doi: 10.1152/ajprenal.2000.279.2.F233
Mathew S, Chen X, Pozzi A, Zent R. Integrins in renal development. Pediatr Nephrol. 2012;27(6):891-900. doi: 10.1007/s00467-011-1890-1
doi: 10.1007/s00467-011-1890-1
Lange A, Wickstrom SA, Jakobson M, Zent R, Sainio K, Fassler R. Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature. 2009;461(7266):1002-1006. doi: 10.1038/nature08468
doi: 10.1038/nature08468
Wu W, Kitamura S, Truong DM, et al. β1-Integrin is required for kidney collecting duct morphogenesis and maintenance of renal function. Am J Physiol Renal Physiol. 2009;297(1):F210-F217. doi: 10.1152/ajprenal.90260.2008
doi: 10.1152/ajprenal.90260.2008
Zhang X, Mernaugh G, Yang DH, et al. β1 integrin is necessary for ureteric bud branching morphogenesis and maintenance of collecting duct structural integrity. Development. 2009;136(19):3357-3366. doi: 10.1242/dev.036269
doi: 10.1242/dev.036269
Muller U, Wang D, Denda S, Meneses JJ, Pedersen RA, Reichardt LF. Integrin α8β1 is critically important for epithelial–mesenchymal interactions during kidney morphogenesis. Cell. 1997;88(5):603-613. doi: 10.1016/s0092-8674(00)81903-0
doi: 10.1016/s0092-8674(00)81903-0
Brandenberger R, Schmidt A, Linton J, et al. Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin α8β1 in the embryonic kidney. J Cell Biol. 2001;154(2):447-458. doi: 10.1083/jcb.200103069
doi: 10.1083/jcb.200103069
Linton JM, Martin GR, Reichardt LF. The ECM protein nephronectin promotes kidney development via integrinα8β1-mediated stimulation of Gdnf expression. Development. 2007;134(13):2501-2509. doi: 10.1242/dev.005033
doi: 10.1242/dev.005033
Humbert C, Silbermann F, Morar B, et al. Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans. Am J Hum Genet. 2014;94(2):288-294. doi: 10.1016/j.ajhg.2013.12.017
doi: 10.1016/j.ajhg.2013.12.017
Filipenko NR, Attwell S, Roskelley C, Dedhar S. Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via alpha-PIX. Oncogene. 2005;24(38):5837-5849. doi: 10.1038/sj.onc.1208737
doi: 10.1038/sj.onc.1208737
Rosenberger G, Kutsche K. αPIX and βPIX and their role in focal adhesion formation. Eur J Cell Biol. 2006;85(3-4):265-274. doi: 10.1016/j.ejcb.2005.10.007
doi: 10.1016/j.ejcb.2005.10.007
Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 2002;16(13):1587-1609. doi: 10.1101/gad.1003302
doi: 10.1101/gad.1003302
Zhou W, Li X, Premont RT. Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes. J Cell Sci. 2016;129(10):1963-1974. doi: 10.1242/jcs.179465
doi: 10.1242/jcs.179465
Weber S, Moriniere V, Knuppel T, et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol. 2006;17(10):2864-2870. doi: 10.1681/ASN.2006030277
doi: 10.1681/ASN.2006030277
Braun DA, Sadowski CE, Kohl S, et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet. 2016;48(4):457-465. doi: 10.1038/ng.3512
doi: 10.1038/ng.3512
Bekheirnia MR, Bekheirnia N, Bainbridge MN, et al. Whole-exome sequencing in the molecular diagnosis of individuals with congenital anomalies of the kidney and urinary tract and identification of a new causative gene. Genet Med. 2017;19(4):412-420. doi: 10.1038/gim.2016.131
doi: 10.1038/gim.2016.131
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078-2079. doi: 10.1093/bioinformatics/btp352
doi: 10.1093/bioinformatics/btp352
MacArthur DG, Manolio TA, Dimmock DP, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508(7497):469-476. doi: 10.1038/nature13127
doi: 10.1038/nature13127
Reese MG, Eeckman FH, Kulp D, Haussler D. Improved splice site detection in Genie. J Comput Biol. 1997;4(3):311-323. doi: 10.1089/cmb.1997.4.311
doi: 10.1089/cmb.1997.4.311
Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11(2-3):377-394. doi: 10.1089/1066527041410418
doi: 10.1089/1066527041410418
Sibley CR, Blazquez L, Ule J. Lessons from non-canonical splicing. Nat Rev Genet. 2016;17(7):407-421. doi: 10.1038/nrg.2016.46
doi: 10.1038/nrg.2016.46
Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99(4):877-885. doi: 10.1016/j.ajhg.2016.08.016
doi: 10.1016/j.ajhg.2016.08.016
Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310-315. doi: 10.1038/ng.2892
doi: 10.1038/ng.2892
Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248-249. doi: 10.1038/nmeth0410-248
doi: 10.1038/nmeth0410-248
Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361-362. doi: 10.1038/nmeth.2890
doi: 10.1038/nmeth.2890
Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40(W1):W452-W457. doi: 10.1093/nar/gks539
doi: 10.1093/nar/gks539
Yu W, O'Brien LE, Wang F, Bourne H, Mostov KE, Zegers MM. Hepatocyte growth factor switches orientation of polarity and mode of movement during morphogenesis of multicellular epithelial structures. Mol Biol Cell. 2003;14(2):748-763. doi: 10.1091/mbc.e02-06-0350
doi: 10.1091/mbc.e02-06-0350
Moorman AFM, Houweling AC, de Boer PAJ, Christoffels VM. Sensitive nonradioactive detection of mRNA in tissue sections: novel application of the whole-mount in situ hybridization protocol. J Histochem Cytochem. 2001;49:1-8. doi: 10.1177/002215540104900101
doi: 10.1177/002215540104900101
Naert T, Tulkens D, Edwards NA, et al. Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos. Sci Rep. 2020;10(1):14662. doi: 10.1038/s41598-020-71412-0
doi: 10.1038/s41598-020-71412-0
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36(10):928-930. doi: 10.1002/humu.22844
doi: 10.1002/humu.22844
Elias BC, Das A, Parekh DV, et al. Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development. J Cell Sci. 2015;128(23):4293-4305. doi: 10.1242/jcs.164509
doi: 10.1242/jcs.164509
Hwang DY, Kohl S, Fan X, et al. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum Genet. 2015;134(8):905-916. doi: 10.1007/s00439-015-1570-5
doi: 10.1007/s00439-015-1570-5
Rosenberger G, Gal A, Kutsche K. αPIX associates with calpain 4, the small subunit of calpain, and has a dual role in integrin-mediated cell spreading. J Biol Chem. 2005;280(8):6879-6889. doi: 10.1074/jbc.M412119200
doi: 10.1074/jbc.M412119200
Rosenberger G, Jantke I, Gal A, Kutsche K. Interaction of alphaPIX (ARHGEF6) with beta-parvin (PARVB) suggests an involvement of alphaPIX in integrin-mediated signaling. Hum Mol Genet. 2003;12(2):155-167. doi: 10.1093/hmg/ddg019
doi: 10.1093/hmg/ddg019
Bagrodia S, Bailey D, Lenard Z, et al. A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins. J Biol Chem. 1999;274(32):22393-22400. doi: 10.1074/jbc.274.32.22393
doi: 10.1074/jbc.274.32.22393
Daniels RH, Zenke FT, Bokoch GM. αPix stimulates p21-activated kinase activity through exchange factor-dependent and -independent mechanisms. J Biol Chem. 1999;274(10):6047-6050. doi: 10.1074/jbc.274.10.6047
doi: 10.1074/jbc.274.10.6047
Feng Q, Albeck JG, Cerione RA, Yang W. Regulation of the Cool/Pix proteins: key binding partners of the Cdc42/Rac targets, the p21-activated kinases. J Biol Chem. 2002;277(7):5644-5650. doi: 10.1074/jbc.M107704200
doi: 10.1074/jbc.M107704200
Li Z, Hannigan M, Mo Z, et al. Directional sensing requires Gβγ-mediated PAK1 and PIXα-dependent activation of Cdc42. Cell. 2003;114(2):215-227. doi: 10.1016/s0092-8674(03)00559-2
doi: 10.1016/s0092-8674(03)00559-2
Michos O. Kidney development: from ureteric bud formation to branching morphogenesis. Curr Opin Genet Develop. 2009;19(5):484-490. doi: 10.1016/j.gde.2009.09.003
doi: 10.1016/j.gde.2009.09.003
Pohl M, Stuart RO, Sakurai H, Nigam SK. Branching morphogenesis during kidney development. Annu Rev Physiol. 2000;62(1):595-620. doi: 10.1146/annurev.physiol.62.1.595
doi: 10.1146/annurev.physiol.62.1.595
Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK. Branching morphogenesis and kidney disease. Development. 2004;131(7):1449-1462. doi: 10.1242/dev.01089
doi: 10.1242/dev.01089
Marrs JA. Branching morphogenesis: Rac signaling “PIX” tubulogenesis. Focus on “Pak1 regulates branching morphogenesis in 3D MDCK cell culture by a PIX and β1-integrin-dependent mechanism.” Am J Physiol Cell Physiol. 2010;299(1):C7–C10. doi: 10.1152/ajpcell.00145.2010
doi: 10.1152/ajpcell.00145.2010
Zegers MM. 3D in vitro cell culture models of tube formation. Semin Cell Develop Biol. 2014 10;31:132-140. doi: 10.1016/j.semcdb.2014.02.016
doi: 10.1016/j.semcdb.2014.02.016
Hunter MP, Zegers MM. Pak1 regulates branching morphogenesis in 3D MDCK cell culture by a PIX and β1-integrin-dependent mechanism. Am J Physiol Cell Physiol. 2010;299(1):C21-C32. doi: 10.1152/ajpcell.00543.2009
doi: 10.1152/ajpcell.00543.2009
Yu W, Datta A, Leroy P, et al. β1-Integrin orients epithelial polarity via Rac1 and laminin. Mol Biol Cell. 2005;16(2):433-445. doi: 10.1091/mbc.e04-05-0435
doi: 10.1091/mbc.e04-05-0435
Kutsche K, Gal A. The mouse Arhgef6 gene: cDNA sequence, expression analysis, and chromosome assignment. Cytogenet Genome Res. 2001;95(3-4):196-201. doi: 10.1159/000059346
doi: 10.1159/000059346
Wang P, Chen Y, Yong J, et al. Dissecting the global dynamic molecular profiles of human fetal kidney development by single-cell RNA sequencing. Cell Rep. 2018;24(13):3554-3567.e3. doi: 10.1016/j.celrep.2018.08.056
doi: 10.1016/j.celrep.2018.08.056
Park J, Shrestha R, Qiu C, et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science. 2018;360(6390):758-763. doi: 10.1126/science.aar2131
doi: 10.1126/science.aar2131
Menon R, Otto EA, Kokoruda A, et al. Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. Development. 2018;145(16):dev164038. doi: 10.1242/dev.164038
doi: 10.1242/dev.164038
Blackburn ATM, Miller RK. Modeling congenital kidney diseases in Xenopus laevis. Dis Model Mech. 2019;12(4):dmm038604. doi: 10.1242/dmm.038604
doi: 10.1242/dmm.038604
DeLay BD, Corkins ME, Hanania HL, et al. Tissue-specific gene inactivation in Xenopus laevis: knockout of lhx1 in the kidney with CRISPR/Cas9. Genetics. 2018;208(2):673-686. doi: 10.1534/genetics.117.300468
doi: 10.1534/genetics.117.300468
Blitz IL, Biesinger J, Xie X, Cho KW. Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis. 2013;51(12):827-834. doi: 10.1002/dvg.22719
doi: 10.1002/dvg.22719
McGrath JL. Cell spreading: the power to simplify. Curr Biol. 2007;17(10):R357-R358. doi: 10.1016/j.cub.2007.03.057
doi: 10.1016/j.cub.2007.03.057
Kanwar YS, Wada J, Lin S, et al. Update of extracellular matrix, its receptors, and cell adhesion molecules in mammalian nephrogenesis. Am J Physiol Renal Physiol. 2004;286(2):F202-F215. doi: 10.1152/ajprenal.00157.2003
doi: 10.1152/ajprenal.00157.2003
Sakai T, Larsen M, Yamada KM. Fibronectin requirement in branching morphogenesis. Nature. 2003;423(6942):876-881. doi: 10.1038/nature01712
doi: 10.1038/nature01712
Hogan BLM, Kolodziej PA. Organogenesis: molecular mechanisms of tubulogenesis. Nat Rev Genet. 2002;3(7):513-523. doi: 10.1038/nrg840
doi: 10.1038/nrg840
Kalter H. Sporadic congenital malformations of newborn inbred mice. Teratology. 1968;1(2):193-199. doi: 10.1002/tera.1420010208
doi: 10.1002/tera.1420010208
Messow C, Gartner K, Hackbarth H, Kangaloo M, Lunebrink L. Sex differences in kidney morphology and glomerular filtration rate in mice. Contrib Nephrol. 1980;19:51-55
Murawski IJ, Maina RW, Gupta IR. The relationship between nephron number, kidney size and body weight in two inbred mouse strains. Organogenesis. 2010;6(3):189-194. doi: 10.4161/org.6.3.12125
doi: 10.4161/org.6.3.12125
Murawski IJ, Maina RW, Malo D, et al. The C3H/HeJ inbred mouse is a model of vesico-ureteric reflux with a susceptibility locus on chromosome 12. Kidney Int. 2010;78(3):269-278. doi: 10.1038/ki.2010.110
doi: 10.1038/ki.2010.110
Migeon BR. X inactivation, female mosaicism, and sex differences in renal diseases. J Am Soc Nephrol. 2008;19(11):2052-2059. doi: 10.1681/ASN.2008020198
doi: 10.1681/ASN.2008020198
Costantini F. Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation. 2006;74(7):402-421. doi: 10.1111/j.1432-0436.2006.00106.x
doi: 10.1111/j.1432-0436.2006.00106.x

Auteurs

Verena Klämbt (V)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany.
Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany.

Florian Buerger (F)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Chunyan Wang (C)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.

Thomas Naert (T)

Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Karin Richter (K)

Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.

Theresa Nauth (T)

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Anna-Carina Weiss (AC)

Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany.

Tobias Sieckmann (T)

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translatationale Physiologie, Berlin, Germany.

Ethan Lai (E)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Dervla M Connaughton (DM)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Steve Seltzsam (S)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Nina Mann (N)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Amar J Majmundar (AJ)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Chen-Han W Wu (CW)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
Departments of Genetics and Urology, Case Western Reserve University School of Medicine and University Hospitals, Cleveland, Ohio.

Ana C Onuchic-Whitford (AC)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.

Shirlee Shril (S)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Sophia Schneider (S)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Luca Schierbaum (L)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Rufeng Dai (R)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Mir Reza Bekheirnia (MR)

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.

Marieke Joosten (M)

Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.

Omer Shlomovitz (O)

Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, Israel.
Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.

Asaf Vivante (A)

Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, Israel.

Ehud Banne (E)

The Genetics Institute, Kaplan Medical Center-Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel.

Shrikant Mane (S)

Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.
Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut.

Richard P Lifton (RP)

Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.
Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut.
Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York.

Karin M Kirschner (KM)

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translatationale Physiologie, Berlin, Germany.

Andreas Kispert (A)

Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany.

Georg Rosenberger (G)

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Klaus-Dieter Fischer (KD)

Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.

Soeren S Lienkamp (SS)

Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Mirjam M P Zegers (MMP)

Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands.

Friedhelm Hildebrandt (F)

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH